Foreword

This Supplementary Planning Document has been prepared by Basingstoke and Deane Borough Council in its role as Local Planning Authority to support the delivery of the Basingstoke and Deane Local Plan 2011-29. It has been informed by extensive consultation including a six week formal consultation with residents and other stakeholders.

It has been prepared in accordance with The Town and Country Planning (Local Planning) (England) Regulations 2012 and is a material consideration in the determination of planning applications.
Table of contents

Section 1 – Introduction 4
- Aims and objectives of urban design 5
- Context and character 5
- Sustainability 6
- Design and sustainability objectives for the borough 7
- Relevant planning policy 8
- How to use this document 10

Section 2 – Starting point for achieving good urban design: contextual survey and analysis 12
- Process of conducting contextual survey and analysis 12
- Compiling and conveying the results of the analysis 16
- Creating a vision/design framework 17

Section 3 – Spatial Structure 19
- Creating a grid of routes and blocks 19
- Grids 20
- Blocks 21
- Giving form to blocks 22

Section 4 – Formation of structure 31
- Shape 31
- Routes and connections 33
- Routes/linkages 33
- Street hierarchy 34
- Focal spaces 37
- Green Infrastructure and external environment 38
- Local centres 40
- Legibility 41
- Character areas 41

Section 5 – Movement and walkability 43

Section 6 – Arrangement of buildings and creation of spaces 48
- Continuous active frontages 48
- Density 50
- Mixing uses 51
- Bringing life to spaces 52
- Enclosure 53
- Variety 54
- Corners 54
- Rhythm 55
- Views and Vistas 55
- Green Infrastructure 56
- Biodiversity 59
- Interface with the public realm 59
- Topography 59
- Maintenance and protection of spaces 61
- Specific types of building arrangement (rural layouts and commercial developments) 62
Section 1 - Introduction

1.1 This document sets out guidance in order to support the achievement of high quality sustainable development, which responds positively to the context. This guidance is part of the council’s goal of raising the quality of new development in the borough and will help to ensure that key priorities set out in national and local level policy are met, along with the objectives of the Council Plan and Sustainability Community Strategy, such as making the borough an even better place to live, enhancing levels of physical and mental wellbeing, improving the local economy, delivering well-planned growth and maintaining and enhancing the built and natural environment.

1.2 The document encompasses the following elements:

- Introduction – encompassing a general overview of design and sustainability issues, both in terms of key principles, and how they are applicable to the borough. This section also considers the relevant planning policy context at both the national and local level.
 - The process of contextual survey and analysis as the foundation for achieving designs which respond positively to the context. This includes guidance in relation to the factors which need to be considered as part of this process.
 - Detailed consideration of specific urban design and sustainability principles, starting with macro scale issues and then progressing down to more micro level issues. The issues covered encompass the following:
 - spatial structure – mainly focusing on grids and blocks and how this influences street patterns and the character of places
 - formation and expression of structure – issues such as shaping the arrangement of built form and the creation of a network of streets
 - movement and walkability – stressing the importance of creating a positive environment for walking and cycling
 - urban design principles for the arrangement of buildings and creating successful spaces
 - design considerations in relation to vehicle parking and cycle storage
 - guidance for ensuring the high quality design of new buildings
 - sustainable design approaches in relation to built form
 - specific guidance in relation to certain types of buildings – including tall buildings, housing and commercial development
 - materials and detailing
 - residential amenity
 - extensions to existing buildings – including housing.
1.3 Each section includes a set of specific principles which encapsulates the guidance set out and how it will need to be reflected in the design of new development.

Aims and objectives of Urban Design

1.4 Firstly, it is considered helpful to clarify the general ethos which underpins urban design theory and practice.

“…It is the collaborative and multi-disciplinary process of shaping the physical setting for life in cities, towns and villages; the art of making places; design in an urban context. Urban design involves the design of buildings, groups of buildings, spaces and landscapes, and the establishment of frameworks and processes that facilitate successful development….” (Urban Design Group, 2017)

1.5 Other key urban design principles are considered to be as follows:

- creating places which are for people first and foremost
- influencing the development process to provide better places for people
- harmonising the full range of elements affecting the development process in order to create well designed, high quality environments
- recapturing some of the conceptual qualities of traditional townscapes, with their strong sense of place, continuity of built form and richness in terms of variety and details
- preventing fragmentation and ensuring successful integration of different townscape elements to create a richly varied whole.

Context and character

1.6 In addition, overarching urban design principles which underpin the principles set out in this document, are the importance of context and the need to protect, or where it is lacking create, distinctive character. Consequently, it is important to ensure that the following principles are followed when designing new development:

- design solutions should be process orientated (a creative approach based on the context), as opposed to being product-driven (standard solutions imposed regardless of context)
- new design should be an original response to the context
- the overuse of standard designs which are not informed by the specific site context will not be acceptable, as this inherently fails to respond to the context or create a distinctive character
- where the existing character is undistinguished, opportunities must be taken to help solve those problems, i.e. create a distinctive character and raise the standard of design in the locality
- poor pastiche or simply replicating mediocre design is not good design
- innovative design approaches can provide a positive and
interesting solution, but the design needs to be sympathetic to the context (e.g. utilise traditional layouts, building forms, materials and detailing).

- it is important to ensure that there is a high quality, well designed external environment, and new development needs to support the delivery of the council's Green Infrastructure Strategy.
- provide extensive, well connected cycleways and pedestrian routes, which protect and enhance on-site public rights of way, and where appropriate, connect to the surrounding access network.

Sustainability

1.7 It is considered vital to ensure that urban design and sustainability considerations are integrated. The text box below encapsulates the way in which sustainability principles underpin urban design.

Sustainable urban design principles

Strategic principles:
- encourage 'walkability'
- provide extensive, well connected cycleways and pedestrian routes
- support the use of public transport
- make urban areas better places to live, and hence facilitate sustainable patterns of development
- increase densities in sustainable locations in a sensitive manner, particularly central urban areas and around public transport nodes
- minimise urban sprawl
- provide a wide range of uses, including mixed-use schemes.
- preserve and enhance Green Infrastructure.

Layout:
- provide permeable layouts, with high quality footpaths and cycle routes in order to encourage sustainable modes of travel

Buildings:
- respond to local climatic conditions
- provide and protect green and open spaces
- minimise loss of planting/natural features
- make generous provision for new planting
- use sustainable drainage systems
- retain and enhance habitat linkages and corridors.
- provide energy efficient buildings
- incorporate renewable energy technologies in a contextually sensitive manner
- use environmentally friendly materials (i.e. low embodied energy), from sustainable and/or local sources
- incorporate suitable features for the enhancement of biodiversity
- re-use existing buildings wherever possible, especially those of historic significance.
Design and sustainability objectives for the borough

1.8 There are a number of high quality areas and developments in Basingstoke town and numerous attractive towns and villages located within the borough. However, an inherent principle of good design should always be the goal of continuous improvement and innovation. It is also important to ensure the protection and enhancement of positive qualities, while also finding solutions to address existing weaknesses and learning from the past.

1.9 Therefore, it is considered helpful to set out what urban design and sustainability principles are particularly relevant for helping to achieve the council’s goal of improving design standards in the borough, enhancing the quality of new development, and meeting the council’s corporate and sustainability objectives.

Key urban design and sustainability principles for the borough

- Ensure new development is high quality, well designed, provides uplifting places for people, and protects, enhances and increases the provision of natural features.
- Improve the standard and distinctiveness of architecture in the borough.
- Enhance the appearance, vitality and vibrancy of the Basingstoke town centre.
- Make the borough a more ‘walkable’ place, including providing better connectivity and enhanced public transport and improve the experience for pedestrians and cyclists.
- Achieve better quality residential areas, which have a more distinctive character and create better places for people to live.
- Create a more legible townscape, with clearly defined character areas.
- Respect for the historic street pattern.
- Enhance the setting of historic buildings.
- Ensure that the character of rural settlements are maintained and enhanced by ensuring that new development responds positively to their distinctive local characters.
- Support provision of more facilities and services, and encourage the provision of a wide range of appropriate uses, within the various neighbourhoods located around Basingstoke town, and in the rural parts of the borough, in order to improve the vitality and vibrancy of those communities.
- Support opportunities to refurbish and/or redevelop existing employment sites (for employment and complementary uses) and increase the vitality and vibrancy of the borough’s employment areas.
- Increase the resilience of the borough in relation to climate change.
- Maintain and enhance Green Infrastructure.
- Enhance mental and physical wellbeing.
- Ensure high quality and well-designed external environment.
1.10 The council is also very concerned about build quality, which has become a significant issue in relation to some new development in the borough. Therefore, the council considers that it is vital that new development is well-built and the council will take whatever measures it can to ensure rigorous enforcement of building regulations.

Relevant planning policy

National Planning Policy Framework (NPPF)

1.11 This SPD is a positive response to the NPPF and the government’s commitment to well-designed places and establishes a strong framework for supporting the creation of high quality buildings and places in the borough. The SPD also facilitates the delivery of new development by providing clarity concerning the council’s design requirements, which allows developers to make more informed investment decisions, as well as supporting a more efficient application process, all of which supports the government’s goal of boosting the supply of high quality homes and furthering economic development.

1.12 This SPD does not attempt to impose architectural styles or particular tastes, nor does it seek to stifle innovation, originality or initiative. Rather it provides a clear framework to support both traditional and contemporary design solutions which are high quality and respond positively to local distinctiveness.

1.13 The NPPF stresses that the visual appearance and architecture of individual buildings is very important. However, securing high quality and inclusive design goes beyond aesthetic considerations. Therefore, this guidance also ensures connections between people and places and the successful integration of new development into the natural, built and historic environment, in particular through the emphasis on contextual design solutions.

1.14 The council supports the NPPF requirement that great weight should be given to outstanding or innovative designs which help raise the standard of design more generally in the area. This SPD provides a positive framework for successfully achieving such outcomes.

1.15 The council’s approach to the consideration of new development also accords with the NPPF encouragement for having local design review arrangements in place in order to facilitate high standards of design. Accordingly, this guide will help to inform the considerations of the Design Review Panel in providing design advice to BDBC. The council also makes use of Building for Life when reviewing the quality of new development, as reported through its annual its Authority Monitoring Report.
1.16 This SPD also supports the delivery of sustainable development, by improving the attractiveness of the borough for residents, workers, businesses and visitors, helping to create stronger community cohesion and supporting sustainable patterns of development as well as the use of sustainable design solutions and technologies.

Council Plan

1.17 The Council Plan 2016 – 2020 encompasses the following key principles which are of relevance to, and are supported by this document:

- making the borough an even better place to live
- ensuring future growth is well planned
- preserve and protect local character and distinctiveness
- maintain and enhance our built and natural environment
- ensuring the borough has a prosperous future

- adopt an innovative approach to meeting the challenges faced by the borough
- supporting the revitalisation of Basing View
- provision of high quality new homes
- delivering regeneration schemes
- reduce energy use and utilise renewable energy technology
- promotion of stronger communities.

Local Plan

1.18 The most relevant local level policy is EM10 in the adopt Local Plan (2011 – 2029) (ALP). This policy will ensure that all development proposals will be of high quality, based upon a robust design-led approach. The policy requirements encompass:

- ensuring places are well connected, accessible, safe, easy for people to find their way around and, function well in practical terms
- are accessible to all and promote buildings that are durable, adaptable and able to respond to changing social, environmental, technological and economic conditions
- positively contribute to the appearance and use of streets and other public spaces
- promote the efficient use of land and achieve appropriate housing densities which respond to the local context
- provide a co-ordinated and comprehensive scheme that does not prejudice the future development or design of adjoining sites
- minimise energy consumption through sustainable approaches to design
- positively contribute to local distinctiveness, the sense of place and the existing street scene
- provide a high quality of amenity for occupants of developments and neighbouring properties, having regard to such issues as overlooking, access to natural light, outlook and amenity space
- have due regard to the density, scale, layout, appearance,
architectural detailing, materials and history of the surrounding area, and the relationship to neighbouring buildings, landscape features and heritage assets
- are visually attractive as a result of good architecture
- provide appropriate parking provision (including bicycle storage), in terms of amount, design, layout and location, in accordance with the adopted parking standards
- provide appropriate internal and external waste and recycling storage areas and accessible collection points for refuse vehicles.

1.19 From a sustainability perspective, it will also be important to have regard to policy EM9, concerning water usage, which requires that improved water efficiency standards are achieved in relation to new development.

1.20 There are also a number of other policies which will be relevant to certain urban design aspects of new development, such as policies SS3 – SS3.12 (site allocations), CN9 (Transport) and EM1 (Landscape), EM4 (Biodiversity, Geodiversity and Nature Conservation), EM5 (Green Infrastructure), EM7 (Managing Flood Risk), EM11 (Historic Environment), EM12 (Pollution).

Neighbourhood Planning

1.21 Various policies within the 'made' and emerging neighbourhood plans within the borough relate to design and sustainability issues:
- Oakley and Deane Neighbourhood Plan: Policy 8, Policy 13
- Overton Neighbourhood Plan: LBE1, H3
- Bramley Neighbourhood Development Plan: D2
- Sherbourne St John Neighbourhood Plan: Policy 2
- Whitchurch Neighbourhood Development Plan: GD1, GD7,
- St Mary Bourne Neighbourhood Plan: P5, P6 and P7
- Sherfield on Loddon Neighbourhood Plan: D2
- Old Basing Neighbourhood Plan: OB&L 1, 4, 7
- Emerging Kingsclere Neighbourhood Plan: K1, K3, K4, K5, K6, K7, K14, K15, K16, K17;
- Emerging Wootton St Lawrence Neighbourhood Plan: WSL4, WSL5, WSL6 and WSL8.

1.22 This guidance will aid in the application of those policies. It will also be necessary to interpret those policies in the light of relevant Village Design Statements (VDS), which provide additional design guidance and contextual information (please see Appendix 1 for a full list of current VDSs).

How to use this document

1.23 This document covers a broad range of urban design issues, and provides clarity regarding the council’s requirements. However, there will also be instances where more detailed,
specialist guidance will also need to be applied, such as in relation to Conservation Areas and Listed Buildings, where it will be necessary to have proper regard to Conservation Area Appraisals and the forthcoming Conservation/Historic Environment SPD. Another example is where development has landscape or biodiversity implications, in which case it will also be necessary to have regard to the Landscape and Biodiversity SPD. It will also be necessary give full attention to Village Design Statements.

1.24 One of the core principles of the urban design is the need to begin with a thorough contextual survey and analysis of the site and its surroundings. This must establish the constraints and opportunities which will inform the design process. Consequently, this document begins with guidance regarding the contextual survey and analysis process.

1.25 Following on from the site analysis the subsequent sections focus on how urban design and sustainability principles are to be applied to specific sites and developments in order to achieve a positive response to the context and deliver high quality development with a distinctive character.

1.26 The guidance set out begins by considering macro level issues such as the structure of development at the larger scale. It then moves down towards more micro level issues such as materials and detailing.

1.27 The application of this guidance will depend on the type of development being considered. For example, development covering large areas of land will need to consider all of the difference scales, i.e. from large scale spatial structure issues, right down to the detailed issues.

1.28 However, in the case of smaller scale development it is likely that larger scale issues such as spatial structure and block arrangement have already been established. It may still be necessary to have regard to the larger scale sections in terms of understanding how the site/development fits with the wider context, however, for smaller scale schemes the most relevant sections of this guidance are likely to be more detailed issues, such as layout, the design of the buildings, and issues concerning materials and detailing.
Section 2 - Starting point for achieving good urban design: contextual survey and analysis

2.1 The starting point for good urban design is an emphasis on understanding and responding positively to the context. The goal is to integrate consideration of the full range of contextual factors, in order to create high quality holistic design solutions. Therefore, this guidance begins with a consideration of this process, before moving on to consider urban design and sustainability principles in more detail.

2.2 Contextual survey and analysis comprises an assessment of the constraints and opportunities of the site and how its surroundings have informed the principles of the design.

Process of conducting contextual survey and analysis

2.3 The contextual survey and analysis needs to be conducted at the start of the design process. It should be conveyed via plans, diagrams and photos, and involve consideration of the factors set out below. The material produced should be submitted with the application. The following list sets out considerations likely to need assessment during the initial analysis process, though this will depend on the nature of any particular site and type of development being considered.

- layout and arrangement of buildings
- scale of buildings
- relationship buildings have with the public realm
- identify important buildings, including historic/listed buildings and other heritage assets, along with their setting
- roofscape
- plot sizes and characteristics
- style of architecture and articulation of external elevations
- the plan form of buildings
- window styles
- external finishing materials and detailing
- boundary treatment/interface with the public realm
- natural environment features.

Townscape

2.4 This comprises the built form characterising the locality in which the site is situated. Characteristics which need to be considered include:

- shape and size of streets and spaces

Uses of buildings and land

2.5 Identify important land uses in the area and consider how they can be protected and integrated in new development. When considering larger developments, opportunities should be explored to provide a
broad range of compatible land uses.

History of the area

2.6 Consider the history of the site and locality, as this will help in understanding the way the area has developed and/or how it may be best developed in the future. Identify key aspects of the historic environment which need to inform the design, which need to be protected and which could be enhanced.

2.7 The borough contains a large number of Conservation Areas, listed buildings and important archaeological remains, and it will be vital to consider the impact of any such proposals on their significance. It will be necessary to have regard to any information available in related guidance/analysis such as Conservation Area Appraisals and Village Design Statements. A full list of such documents is set out in Appendix 2. Historic England have also published guidance on characterisation which may be consulted when assessing the historic context:

https://historicengland.org.uk/research/methods/characterisation-2/urban-characterisation/

Movement and highways

2.8 Consider roads, cycle and pedestrian routes as well as public transport connections. Opportunities should be identified to connect with and enhance existing movement.

One means of assessing certain townscape issues in urban design involves using figure ground drawings, as these enable the understanding of features such as the shape and size of streets and spaces and the layout and arrangement of built form. This example shows the centre of Whitchurch.
networks and maximise access to sustainable modes of travel, and to create a variety of convenient routes in order to encourage walking and cycling.

2.9 Movement patterns can also inform how development needs to be shaped and orientated.

2.10 There may also be opportunities to raise densities in more sustainable locations (i.e. the areas with the best access to services and public transport).

2.11 Consider any existing highways issues affecting the area which may influence the proposed development. Also consider whether there are any parking issues being experienced in the locality and assess their implications concerning parking options for new development.

2.12 From a highways perspective it is also useful to establish at this point what parts of the site constitute public highway\(^1\), and also investigate whether there are any public rights of way which could be affected by the proposed development\(^2\).

Topography

2.13 Pronounced variations in topography can impact on building construction, neighbour relations and highways layouts. They can also have landscape implications, for example an elevated site may be constrained in landscape terms. However, changes in level, if properly utilised can make a development more interesting and attractive, and therefore do sometimes present an opportunity in design terms.

Orientation

2.14 This will be important in relation to the arrangement of the built form, i.e. the fronts and backs of new development need to be well-related to the street scene, and it is vital to consider how to ensure new development does not back onto important parts of the public realm.

2.15 This is also a particularly significant issue in relation to sustainability. For example, paying proper regard to orientation creates opportunities to maximise passive solar gain and facilitate the use of certain renewable energy technologies such as solar panels.

Views

2.16 Includes consideration of views into and out of the site, especially from roads, footpaths.

\(^1\)https://www.hants.gov.uk/transport/searchesrightscharges/maintainedroads; https://www.hants.gov.uk/transport/searchesrightscharges/highwayextent

\(^2\)http://localviewmaps.hants.gov.uk/LocalViewmaps/Sites/ROWOnline/# https://www.hants.gov.uk/landplanningandenvironment/rightsofway/definitivemap/definitivestatements
and open space, particularly any long views and views from high land and sensitive receptors such as designated areas including Conservation Areas and the North Wessex Downs Area of Outstanding Natural Beauty.

Landscape and environment

2.17 Identify important landscape features, both within and around the site, having regard to the council’s Green Infrastructure Strategy. It is important to consider how these can be retained and protected, and how they could be successfully integrated into new development.

2.18 Identify key elements of green infrastructure and consider how these can be integrated and enhanced. Further information concerning the green infrastructure is accessible via the link below:

https://www.basingstoke.gov.uk/ENV09#elem_27396

Biodiversity

2.19 Have regard to relevant analysis and guidance set out in the council’s Landscape and Biodiversity SPD and the Countryside Design Summary along with any relevant VDS.

2.20 Consider the potential biodiversity implications of the proposed development. For example, is there the potential for the development to impact on protected species such as bats and great crested newts, and designated areas such as SSSIs or SINCs. In addition, the opportunities to incorporate biodiversity mitigation and enhancement should also be established, for example through the creation of native species, bird and bat boxes, wildlife friendly water features or by maintaining and extending habitat corridors.

Flood risk

2.21 While water features can create opportunities in a design sense, it is important to consider the impact of flood zones. These can be identified on the Environment Agency flood maps3.

2.22 This is a particularly significant issue in certain parts of the borough, as there are areas of Basingstoke and other towns and villages which experience severe flooding problems.

Pollution

2.23 It is necessary to identify and consider the implications related to unneighbourly land uses and/or sources of pollution.

3 https://flood-map-for-planning.service.gov.uk/
Social factors

2.24 The analysis needs to consider the social context of the area. For example, consideration should be given to how new development can benefit the wider community, e.g. by providing access to new facilities and/or a wider mix of accommodation, or accommodation and/or uses which are particularly needed in the local area. Also consider issues such a community safety and opportunities to reduce the risk of crime and antisocial behaviour.

2.25 It is also important to establish at the outset what community facilities will be needed, both in terms of meeting the council’s requirements, and how such facilities can most effectively meet the needs of the community.

Neighbours

2.26 It is important to consider the constraints created by neighbouring occupants, in particular for sensitive land uses such as residential properties.

Facilities and services

2.27 Facilities and services either onsite or directly adjacent should be identified so that they can be protected. There may also be opportunities for them to be enhanced by new development and possibly new facilities and services provided.

Compiling and conveying the results of the analysis

2.28 The process set out above should culminate in the production of a diagram or series of diagrams identifying the key contextual issues, constraints and opportunities.
This should then provide a framework for shaping the subsequent detailed design process, beginning with the creation of a vision/conceptual framework for the proposed development.

Creating a vision/design framework

2.29 Once the contextual survey and analysis has been completed, a guiding vision or design framework should be devised in order to create a structure for the detailed design work. This is likely to be conceptual in the first instance, but can then be refined to form the basis for more detailed design work.

2.30 This should draw together the analysis which has been conducted, clarify the constraints and opportunities, and encapsulate what kind of place can be created in response to those factors. This process may encompass:

- identifying the style and topology of the proposed development
- main movement routes and connectivity with the surrounding area
- density
- uses
- character areas
- landscape design concept (including how it relates to Green Infrastructure Strategy).

2.31 The design framework should spatially organise proposed site uses and the location of new built form and spaces. This is a good means of testing out ideas and assessing the feasibility of various options.
2.32 At this stage it may be advisable to carry out pre-application consultation with the Local Planning Authority, as this allows the developer and council to consider the conclusions drawn from the contextual survey and analysis the appropriateness of the vision for the new development. This should then allow the detailed design work to be done with more confidence, and lead to greater clarity regarding the likely outcomes of the application process.

2.33 In creating the vision for a place, consultation with the local community will also help to ensure that proposals reflect community aspirations. Therefore, public consultation at this stage is also advised. It will be necessary to have regard to the council’s Statement of Community Involvement when carrying out this process.

Key design principles – contextual survey and analysis

CSA1 - design solutions need to be informed by a thorough contextual survey and analysis, clearly identifying the constraints and opportunities of the site and showing how its surroundings have informed the design

CSA2 – matters to assess include:

- Townscape factors, including: built form characterising the locality; uses of buildings and land; history of the area; movement patterns; orientation; views.
- Landscape: including consideration of the existing landscape structure and important locally distinctive landscape features such as topography, trees and green infrastructure.
- Environment: including consideration of biodiversity, flood risk and pollution.

CSA3 – the assessment of the contextual factors needs to inform the creation of a vision/design framework which establishes how to achieve a positive response to the context, which will then inform the detailed design

CSA4 – the final design solution needs to be a positive, creative and original response to the site context.

CSA5 – Where a Design and Access Statement is required, this should include details of the contextual survey and analysis process and the way in which the design solution has responded positively to it.

- Social: including consideration of the social context of the area, the needs of the community and the impact on existing residents/neighbours.
Section 3 - Spatial structure

3.1 The spatial structure has a huge impact on the character of a place, for example medieval market streets, Victorian terraces, suburban culs-de-sac and modern blocks of flats all have very distinct spatial structures. Therefore, in the first instance it is important to understand the different types of spatial structure influencing the context of any particular site, and then establish how new development will respond positively to that context. For example, attempting to incorporate a curved culs-de-sac arrangement into an area defined by terraces is likely to be inherently incongruous and unsuccessful.

3.2 It is important that the spatial structure is ordered and well expressed. This is in order to ensure that people are able to easily understand, appreciate and feel comfortable in the places they are engaging with.

3.3 In order to ensure that a clearly defined spatial structure is produced, it is necessary to create some form of grid of routes and blocks. This will need to be informed by the spatial characteristics of the area and the type of development being created.

This figure ground drawing shows different types of grids within the central area of Basingstoke. The arrangements created all show a certain sense of order, however, the grids defining different parts of the town centre are all somewhat irregular, as is the overall arrangement.
3.4 The identification of the network of routes, focal spaces and green corridors, and how connections between these can be created across the development will establish a ‘grid’ of linkages, which will then inform the creation and shaping of blocks, streets and spaces.

Grids

3.5 Grids provide a mechanism for creating structured arrangements, and come in a wide variety of different forms. Regular grids provide very clear definition to built form but can be overly rigid, monotonous and lacking in vitality. Such grids are not characteristic of Basingstoke or the borough generally, which is typified by a variety of different grid structures.

3.6 An irregular grid is often an ideal arrangement. The blocks utilised in such an arrangement involve some variety in terms of shape and size. Consequently, the grid appears distorted, but is still present and provides for a sense of order and continuity. An irregular grid allows flexibility to create variety and respond to contextual issues such as topography, landscape features and movement networks. This form of grid is also more reflective of the spatial arrangements found in the borough.

When creating grids and arranging the blocks, it is important to consider the vistas which will be created. The edges of the blocks will frame views, meaning whatever is located at the end of the vista will be accentuated. It is consequently advisable to offset the blocks, so that rather than continuing the lines of streets directly along the whole development, each vista is instead terminated with the view of another block, i.e. creating T-junctions at the end of each block rather than crossroads. This gives the streetscape
greater definition and enclosure.

Blocks

3.8 Blocks comprise groups of buildings and associated spaces surrounded by streets. Therefore, in essence they comprise a single unit within a wider grid. A key message of urban design is to establish an effective pattern of blocks, which give continuity to the built form and facilitate efficient movement.

3.9 The appropriate arrangement and size of blocks will depend to a large extent on the context. For example, in a very urban context, the block structure would tend to be tight (referred to as fine grained), whereas in a more suburban or rural area the structure will generally be looser.

3.10 It will be important to consider the context, and establish how new development can relate successfully to existing block shapes and sizes in the locality.

These diagrams illustrate some of the different types of blocks which can be created and how they are shaped by the built form.
either in terms of reinforcing existing successful patterns of development, or seeking to address weaknesses.

Key design principles – spatial structure

SS1 – Analyse and respond positively to the spatial structure of the area.

SS2 – Create a clearly defined structure, which can be easily understood by the people using the development.

SS3 – Create an effective grid of blocks, which should be clearly defined and well-expressed.

SS4 – Incorporate blocks or a range of shapes and sizes in order to provide variety and respond to relevant constraints and opportunities.

Giving form to the blocks

3.11 The manner in which buildings are positioned and arranged within the block needs to reinforce the structure of connected network streets and spaces. The sections below set out how different forms of blocks can be created.

High density

3.12 High density development is an important component of supporting sustainable patterns of development, particularly in central locations within large settlements such as Basingstoke. However, high
density development still needs to be integrated with urban design principles. This requires that rather than large buildings standing in isolation, the development is instead arranged to form clearly defined blocks, which create well defined streets and spaces.

Perimeter Blocks

3.13 Urban design generally emphasises the use of perimeter blocks. These are based on an approach where each of the frontages of a block has a public, active/outward looking facade, generally creating a continuous frontage along the street.

3.14 Perimeter blocks have several advantages, including:

- clearly defining the public and private realm with built frontage
- ensuring that private gardens (or the backs of houses) are inaccessible from the public realm, making them less vulnerable to intruders.

This example illustrates how relatively high density development has been arranged in a series of perimeter blocks, creating a permeable street pattern which connects with the surrounding movement networks.
ensuring that rear boundaries and/or servicing areas are masked from public view

- their ability to accommodate most forms of development, including non-residential and open space

- concentrating activity in public spaces and ensure that windows and doors face onto the street and provide surveillance.

3.15 Perimeter blocks are a very flexible urban form, they can be a variety of shape and sizes, and can encompass anything from high density flatted schemes, to low density suburban development. The variation between these development forms can be achieved in a number of ways, such as the scale and typology of the buildings, size of the block, degree of set-back from the pavement edge, type and amount of space within the block.

This diagram illustrates the flexibility of perimeter blocks. In this instance the concept is applied to suburban development. In this case the blocks are looser and the overall arrangement much less dense than the example above.
Courtyard development

3.16 This form of arrangement can take on various forms. It is often predicated on creating intimate spaces within fairly compact blocks or parts of blocks, and hence is often associated with higher density development in fairly tight spaces.

3.17 There is also a rural variant to this approach, as farm buildings are often arranged around a courtyard, and hence this can be useful component of rural style housing layouts.

3.18 Like perimeter blocks, courtyard development has the benefit of giving strong definition to streets and spaces, while also creating a semi-private space in the centre of the block/courtyard, though the space in the centre is often smaller than is the case with a perimeter block.

3.19 The dimensions of the block and height of the buildings needs to be carefully considered in relation to the impact this will have on the
courtyard space. This is particularly important in terms of considering how to ensure sunlight can penetrate into the courtyard. For example, the buildings at the southern end of the block may need to be lower or even removed in order to allow sunlight to penetrate into the courtyard, though this needs to be balanced with the goal of retaining privacy.

3.20 It is important to think about how the courtyard will be designed and used. For example, traditionally these spaces have provided good opportunities for children to play, in which case the courtyard could be designed to facilitate those activities.

Terraces

3.21 Terraces are a useful housing typology, which has the benefit for helping to raise densities and hence encourages efficient use of land. As a result they are supported in principle. However, they should generally only be used where they are...
sympathetic to the context. Where they are considered appropriate the following guidance sets out advice for helping to ensure they are arranged and used effectively.

3.22 Terraces should be used to provide perimeter blocks i.e. with the housing on the outward facing sides of the blocks, with the gardens in the centre.

3.23 A difficulty with terraces is the incorporation of parking, as this generally needs to be provided to front of dwellings, meaning the public realm is dominated by vehicles and hardstanding and set-backs from the road are increased. It is also difficult to properly address corners, as the side elevation is likely to be presented to the public realm.

3.24 Therefore, when using terraces it is important to consider how the parking can be provided in a manner which does not undermine the enclosure of the street scene and does not result in the frontage/streets being dominated by car parking.

3.25 Sometimes a lane or alleyway can be located to the rear of the two outward facing sides of the terrace/row and provides parking to the rear of the properties (such an arrangement is used in parts of Brookvale, Basingstoke). However, it will be important to ensure that such features do not result in potential anti-social behaviour.

3.26 Housing can also be arranged in tight, regular rows of detached and semi-detached houses. This produces a very similar arrangement of built form when compared with terraces, but provides greater flexibility, such as the potential to provide parking to the sides of dwellings and the flexibility to provide a more sinuous layout.

Culs-de-Sac

3.27 Culs-de-sac are a significant feature of some parts of Basingstoke town and other settlements in the borough. They can have the benefit of preserving amenity, creating quiet, peaceful neighbourhoods and can be beneficial in terms of highway safety and crime reduction.

3.28 However, Culs-de-sac often undermine the goal of achieving a coherent, clearly defined grid and block structure based on continuous outward looking development, as they are essentially predicated on insular loops/lollipops.

3.29 Culs-de-sac have often been criticised for leading to a lack of vitality and social cohesion and hence need to be used with caution. Culs-de-sac also create less clearly defined space, are less efficient in density terms, and much less permeable than grids.

3.30 However, where their use is considered justified, it is recommended that the following approaches are considered in order to improve the effectiveness of this approach:

- Create a permeable network of safe and usable pedestrian and cycle links.
• Within larger schemes try and incorporate some mix of uses, in particular uses such as schools, community buildings, children’s day nurseries and local shops and cafes should be incorporated where possible.
• Ensure efficient use of land, but still with verdant frontages and the incorporation of sufficient open space in suitable locations.
• Consider incorporating residential 'courts' into more clearly defined frontage development. These are shorter and more compact than typical culs-de-sac and hence do not rely on the need for a turning head at the end for emergency vehicles. These can generally only serve a very small number of dwellings (possibly no more than 5).
• Another option is to seek to bring some of the advantages of culs-de-sac to the grid/block arrangement, for example by introducing measures to prevent through traffic e.g. by blocking off the vehicular connections between certain streets, but leaving them open for pedestrians and cyclists.

Key design principles – spatial structure

SS5 – It is recommended that development is based on perimeter blocks, with outward facing buildings, and more secluded spaces (such as gardens) in the centre of the block.
SS6 – Cul-de-sac need to be legible, efficient and permeable.
Example of a cul-de-sac style arrangement with a clearly expressed structure and incorporating some higher density development.
Section 4 - Formation and expression of structure

4.1 This section focuses on the considerations which will guide the formation and expression of the spatial structure of grids and blocks. This includes aesthetic considerations, along with more functional aspects such as creating effective movement networks. It is important to create a clearly defined, attractive structure, which functions effectively.

Shape

4.2 A key issue is the shape of blocks, streets and spaces. This has a significant impact on the character and visual effects created by a layout, and on the appearance of the buildings themselves, as well as how the spaces feel for the people inhabiting them, and also their functionality.

Straight lines

4.3 Straight lines can have the benefit of creating very clear, ordered and sometimes impressive streets/spaces. This is generally considered a very urban and formal approach to site planning. However, straight lines can be rigid and static in visual terms which is then reflected in the atmosphere they create. Therefore, they should be used with caution, unless they form a key part of the existing context.

This example from Brookvale, Basingstoke, illustrates how straight streets provide a very clearly defined structure, but can suffer from weaknesses such as dominance by car parking and quite poorly defined vistas (i.e. the building at the end is lost in the distance).
4.4 Straight streets/spaces tend to emphasise whatever is at the end of the vista, as opposed to the buildings forming the edge of the street/space. Therefore, it is essential to terminate the vista with an important and high quality visual feature such as a distinctive, attractive building, well defined area of significant planting, or attractive view towards the landscape beyond.

4.5 Following on logically from above, it is important to ensure that less attractive features such as sides of houses/blocks, garages and parking areas are not at the end of a vista. Parking also needs to be kept back from the frontage wherever possible, as otherwise it will be overly prominent visually.

Curves

4.6 Artistic theory suggests that curves are more aesthetically pleasing than straight lines, and generally this option is more interesting visually, and gives more emphasis to the design of the buildings along the street.

4.7 While straight streets create a greater sense of order, curved streets allow the townscape to unfold more gently and sequentially, providing interesting and intimate spaces, which enriches the pedestrian experience. Curved streets also provide a greater sense of enclosure, as there are not so many long views. Curves also encourage lower traffic speeds and are also more flexible.

4.8 The choice between a straight and curved street will obviously depend hugely on the
A successful spatial structure comprises a connected network of:

- routes (active space: streets, paths, roads etc)
- focal spaces (static space: squares and greens, etc)
- landscape features and green corridors.

The integration of these different components will have a significant impact on the formation of the spatial structure. All the elements of the movement network proposed as part of new development need to accord with the policy criteria set out in policy CN9 (Transport) of the ALP, while the landscape related aspects will need to comply with policy EM1 (Landscape), EM4 (Biodiversity, Giodiversity and Nature Conservation), EM5 (Green Infrastructure) and the Adopted Green Space Standards.

The starting point in designing a successful scheme is often to establish the routes through the site, which create linkages with existing routes and/or facilities and services outside of the site. This will then inform the structure of any new layout, and the shape and size of the blocks.

A key goal of urban design is to create permeable structures. A high degree of permeability will promote walking and cycling and can therefore help to reduce dependence on cars and improve sustainability. Therefore, it is necessary to maximise the level of connectivity. These connections also need to be designed in order to encourage pedestrian and cyclist usage, for example by being easy to navigate, safe and convenient and with good surveillance from buildings looking onto them.

These connections should be based on:

Key design principle – formation of spatial structure

FS1 – Decide on an appropriate shape of streets and spaces, which will need to respond appropriately to the context.

Routes and connections

4.9 Routes and connections have a key role to play in the way settlements develop, the shaping of the spatial structure and the layout of new development. Given the importance of securing sustainable modes of transport, including walking and cycling, these should be given at least the same level of consideration as vehicular routes when considering how to incorporate routes and connections.
connections with routes, public transport and local facilities beyond any particular site.

desire lines running through the site.

4.15 The contextual survey and analysis should identify key movement patterns and desire lines. It should then be possible to form a structure based on these routes, and design the buildings to be well-related to them.

Street Hierarchy

4.16 The routes created will need to have a hierarchy, with primary routes being the main sources of activity, supported by secondary and local routes. This hierarchy needs to be clear, and hence signified by features such as street width and appropriate building design (such as taller buildings along main streets) in order to ensure that places are legible.

Main/primary streets

4.17 These will be at the top of the street hierarchy, and will tend to carry the highest volumes of traffic and non-vehicular movement within an area, including through-traffic. These provide structure for development and connect it to the surrounding urban fabric and highway network. They provide the primary vehicular access to the area, and link with other street types within the new development to form the

This is an example of a primary street running through the Sherfield Park development in the north of Basingstoke. The street is sinuous and its importance is signified by the taller buildings fronting onto the street.
back-bone of a permeable network of streets.

4.18 These streets provide a good opportunity to incorporate significant large species tree planting. This should help to mitigate the impact of the traffic and helps to separate pedestrian and cycle paths, and adjacent housing from the road. A verge or hard margin between the footway and carriageway should be provided to increase separation between vehicles and pedestrians.

4.19 In order to signify the importance of main streets, respond to the level of traffic, along with the potential to incorporate tree planting, setbacks of buildings from the road are likely to be more generous than other street types. The increased setbacks are likely to require that buildings are taller along these streets, which will ensure there is still adequate enclosure and definition of the street and signify the rank of the street in the hierarchy.

4.20 These streets should be designed in order to naturally reduce traffic speeds, and consequently a relatively sinuous shape is likely to be required. It may also be necessary to incorporate other features which naturally slow down traffic speeds, such as mini-roundabouts. This will need to be balanced with consideration of how vehicles such as buses can navigate the streets in a practical manner.

This is an example of a secondary street within Popley in Basingstoke. The building heights and degree of enclosure are lower than would be the case with a primary street. The shape of the street and road width also encourages lower vehicle speeds. The small front gardens and tree planting improve the pedestrian experience and soften the character of the development.
Secondary streets

4.21 These are the general streets within residential areas or business districts. They carry a wide range of movement types and provide the main setting for homes and businesses, allowing direct access for occupants and users of buildings.

4.22 Secondary streets are more focused towards local traffic. These streets are generally narrower and lined by lower buildings as well as being characterised by lower densities.

Tertiary streets

4.23 Tertiary streets can be used in residential areas and involve more informal streets with a less clearly defined differentiation between the various functions (e.g. roadway, footway). Tertiary streets should only be considered where the volume of vehicular traffic is expected to be low and consist mainly of residents of that particular street. A change in surfacing can assist with the need to signify the nature of the space and the different functions within it, while also helping ensure low vehicle speeds.

Shared surfaces

4.24 These are in many respects similar to tertiary streets, though they involve even less definition of different functions and involve a greater degree of informality, emphasising the space as a place rather than being predominantly a piece of highway infrastructure. As a result they seek to reduce the level of dominance by motor vehicles, encourage walkability and emphasise placemaking, all of which helps produce successful urban design.

4.25 However, these spaces still need to function effectively.
Therefore, it is important to ensure that they are designed in order to reduce traffic speeds and facilitate safe interaction between vehicles and pedestrians, and these spaces are only likely to be successful if they involves relatively low traffic flows. More detailed information on the technical aspects of these spaces is available via the following link:

https://www.gov.uk/government/publications/shared-space

Focal Spaces

4.26 Focal spaces create distinctive elements within the urban fabric and provide opportunities for people to come together, which enhances individual and community wellbeing. Focal spaces tend to be located at points where routes and connections converge. Therefore, the location and function of these spaces needs

Key design principles – formation of spatial structure

FS2 - Ensure new development is as permeable as possible and contributes to making Basingstoke a more walkable place.

FS3 - Establish where the routes across the site can be located so as to reinforce and wherever possible enhance existing networks.

FS4 - The course these routes take will give structure to new layouts.

FS5 - There needs to be a clear hierarchy to the routes defining the spatial structure.

This is an example of a focal space in Basingstoke town centre. Various routes converge, providing a space for people to congregate. This provides a good location for uses such as restaurants and for people to sit in a public place.
to be considered in conjunction with the establishment of the movement structure.

4.27 The most important focal points traditionally accommodate public spaces and/or buildings that are of significance to the community. However, in any large to medium sized layout the intersection of routes create opportunities to provide focal points, which can incorporate uses such as community buildings, public open space and/or play areas. These spaces will enhance the legibility of the layout and provide a focus for generating community cohesion.

4.28 The uses proposed in these locations, along with the arrangement of buildings and their design needs to reflect the importance of the focal point location and facilitate opportunities for community interaction.

4.29 These spaces also provide an opportunity for structural planting and high quality hard landscaping, which will have a very positive impact on the quality of both the spaces, and the overall character of the development.

Green Infrastructure and External Environment

4.30 The structure of a scheme should not just relate to the urban features. Environmental psychology has shown that views of, and opportunities to engage with, the natural
environment have a huge impact on the levels of wellbeing, as well as the reduction of stress in residents, employees, and visitors. Therefore, it is very important to ensure that natural features are integrated into the urban structure, and that they are in prominent position in order to maximise their utility value.

4.31 Existing landscape features should serve to shape the structure of the built form. Consequently, it is necessary to identify and protect these elements, while ensuring that the proposal responds positively to features such as existing trees/tree belts, field patterns and the topography of the site. In addition, if any protected habitats are present within the site, then the structure of the new development would have to take this into account.

4.32 Consideration also needs to be given to creating green links which connect with the existing and wider green infrastructure network. Consequently, such features will also have a significant impact on the layout and site arrangement, and how it is defined. Sufficient distances should be allowed between the soft landscape structure and new buildings.

4.33 A strong landscape structure also creates opportunities to strengthen the biodiversity of a scheme, creating new habitats for wildlife. Green corridors can include a variety of sites and spaces such as linear parks, woodland, allotments, or playing fields.

In this example from Popley in Basingstoke the open space is very well integrated into the layout, meaning the play spaces are well overlooked, residents enjoy a pleasant outlook, and the open space makes a very positive contribution to the character of the development.
Open Space

4.34 It is important to consider how open space can be integrated effectively into the structure. For example, areas of open space will constitute important focal points for activity, recreation and interaction, so need to be in prominent places within the layout, such as at the intersection of pedestrian routes. This will maximise the positive influences these spaces can have on the character of the area, as well as improving the legibility of the area.

4.35 These spaces should also be located where they are visually prominent and can take advantage of attractive views.

4.36 It is also vital to think about how the space is likely to be used and consider the community safety implications. In this regard it is important to ensure open space benefits from high levels of natural surveillance. Therefore, public open spaces need to be directly overlooked by the fronts of houses, and located within prominent positions within the layout.

The relationship with neighbouring residents is also an important issue in terms of safety and community cohesion. For example, if the space would be used for informal sports (such as kick-about), then it may need to be further away from houses so as to prevent any detrimental impacts in the form of noise and disturbance. Alternatively, if such spaces are located more centrally within a development then space will need to be provided around it, for example a 10m buffer between the edge of the space and surrounding houses. In relation to equipped play areas separation distances with neighbouring properties will need to be 20m for local play areas and 30m for neighbourhood play areas. Please see Green Space Standards for further details.

Local centres

4.38 If a development is of such a size and/or is in a location that it requires a local centre, the following principles should be adhered to with respect to the location and design of the local centre:

- The local centre should be located in the most accessible location for pedestrians and cyclists, as well as cars. This is likely to be at a junction of the highest order streets within the development.
- Local centres will be a major local destination so the movement network should provide direct and convenient pedestrian and cycle routes from housing to the centre.
- Local centres must be designed as areas of social gathering and hence must have a high quality public realm and uses which facilitate social interaction.
- Ensure that commercial premises are in a location where there is the maximum

4 Appendix 4 in the Adopted Local Plan.
possible opportunity to attract passing trade.

4.39 Community facilities have an important role in supporting community well-being. They need to be located and designed in a manner which maximises their viability and usability. For example, by colocating community facilities (e.g. community centres need to be next to outdoor sport facilities/open spaces). Further guidance is set out in other council documents which should be referred to when devising relevant schemes:

https://www.basingstoke.gov.uk/community-investment-framework

Legibility

4.40 An overarching issue in relation to spatial structure, which draws together many of the issues raised above, is the need to create layouts which are legible i.e. easy for people to understand and navigate. This depends on structures which are clearly defined, and well expressed. This can be achieved by utilising:

- a clear spatial structure
- clearly defined outward facing blocks
- landmark/marker buildings in key locations
- variations in the architecture in order to create clearly defined character areas
- a clearly defined street hierarchy, which is reinforced by the design and scale of development addressing the different parts of the street hierarchy
- open space and distinctive natural features located in prominent positions.

Character areas

4.41 A key part of legibility is creation of clearly defined character areas. This prevents the development appearing monotonous and helps express the different functions of the layout.

4.42 The creation of these different areas needs to be informed by the context and site characteristics, as opposed to being arbitrary. For example, where a site is on the edge of a settlement, it may be appropriate to have a more urban/suburban character area adjacent to the existing building form, but a more rural character on the edge. Alternatively, the character areas within a development may be informed by the variety of architectural traditions within a particular locality, which can then be reflected in the new development. It may also be appropriate to create a more urban character around any existing public transport interchanges or commercial uses.

4.43 The character areas need to be coherent and well expressed. It is also necessary to consider how the different character
areas will be integrated, as if the differences are too pronounced then this could lead to a lack of harmony between the different components of the development.

4.44 The creation of different character areas will need to be achieved by utilising various different design techniques, such as:

- arrangement of buildings
- shape and size of streets and spaces
- building design (including materials and detailing)
- scale of development and density
- land/building uses
- landscape design
- relationship with the movement network.

4.45 It is also important to consider the relationship and transitioning between the different character areas. This should not appear forced or contrived. In addition, there can also still be variety within the different character areas.

Key design principles – formation of spatial structure

FS6 - Focal points can be created at the intersections of important routes, and the land uses and building design will need to respond positively to such opportunities.

FS7 - Ensure that important existing and new landscape features are incorporated into the structure, and are placed in prominent positions.

FS8 - The landscape structure will also help define the arrangement of built form, and green links will be needed across the site in order to ensure the continuity of the structural landscape framework and wildlife habitats.

FS9 – Ensure that open space is designed so that it supports community safety, is well integrated into the layout (located in a prominent position), and has development fronting onto it.

FS10 – Ensure that the structure of the development is legible/easy to understand and navigate.
Section 5 - Movement and walkability

5.1 In order to support policy CN9 in the ALP, a fundamental principle of urban design is ensuring that places are designed for people, not just vehicles. This is vitally important in terms of making the borough, and particularly Basingstoke town, a more walkable place. This means giving emphasis to considering how existing and new development will provide a positive environment for pedestrians and cyclists, and ensuring vehicles do not dominate.

5.2 Therefore, pedestrian and cycle routes need to be given at least the same amount of attention as vehicular infrastructure when designing and assessing new development. As part of this process, for larger development, it may be necessary for schemes to be supported by a non-motorised user audit. Increasing the attractiveness of walking and cycling also needs to be emphasised in order to help improve the sustainability of the borough, improve health and wellbeing, and help lower traffic congestion levels. Research into walkability has also shown that improving the environment for pedestrians and cyclists is economically beneficial in terms of allowing residents to make financial savings on transportation costs, and makes places more appealing to new workers and attractive to visitors.

5.3 Other key principles for encouraging walkability are:

- design places for people
- mix uses, as people need places to walk to

Key design principle – movement and walkability

MW1 – An overarching objective for the borough, and particularly Basingstoke town, is making it a more walkable place. This requires increasing the quality and connectivity of pedestrian routes and ensuring that footpaths are:

- **Useful**: i.e. they take people to useful destinations such as facilities and services.
- **Safe**: i.e. the routes need to feel safe for people using them.
- **Comfortable**: i.e. the routes need to be practical and pleasant for pedestrians to use.
- **Interesting**: i.e. routes need to be attractive and stimulating.
- **Legible**: well signed and easy to understand.

support public transport provision
support cycling infrastructure.

Pedestrian routes

5.4 Infrastructure for pedestrians must be planned using the following design criteria, which also ensures that disabled users are taken into account:

- permeability: new development must provide multiple routes, connecting with existing movement networks beyond the site and local facilities
- accessibility: routes need to be continuous and direct
- convenience: there needs to be minimal delays at crossings and routes should be unimpeded by parked vehicles or street furniture
- safety: designs need to minimize actual and perceived danger for pedestrians, while traffic volumes and speeds should also be reduced where necessary to create a safer environment for walking
- comfort: local facilities need to meet design standards for footway widths, gradients, quality of surface; and cater for all types of user including disabled people
- attractiveness: footpaths need to be located in parts of the site which are attractive and routes should be interesting
- legible: footpaths need to be easy to navigate, including through the provision of raised tables and appropriate signage.

5.5 In addition, the following considerations also need to be employed when designing footpaths:

- ensure that footpaths respond to desire lines
- footpaths need to have development fronting onto them
in order to ensure proper surveillance

- it is also vital to avoid dark, secluded alleyways and underpasses (either below ground or under parts of buildings)
- it is also important to think about the practicalities of pedestrian routes. For example, think about means of avoiding abuse of pedestrian routes, such as vehicles parking on the footpath
- existing and proposed PROW should be retained within a green corridor, separate from estate roads.

5.6 Additional technical guidance in relation to the design of pedestrian routes is available via the following links:

https://www.gov.uk/government/publications/inclusive-mobility

It is also vital to ensure that any work done to Public Rights of Way are carried out in accordance with the HCC Countryside Service Design Standards:

https://www.hants.gov.uk/landplanningandenvironment/countryside/designstandards

Cycle paths

5.7 It is vital that additional routes and linkages are created and are coherent, well signed, joined-up and link to a range of destinations. The following principles should inform the design of new development where cycle paths need to be incorporated:

- Routes need to be clear, coherent, attractive, safe, comfortable and direct.
- Recognise that cyclists will have different levels of ability, and therefore it is necessary to consider how routes will be used by both experienced and inexperienced cyclists. Dedicated cycle routes should be provided, where suitable, as many experienced cyclists will avoid shared paths in order to prevent conflicts with pedestrians.
- Take account of cyclists space requirements, manoeuvrability and speed in all infrastructure, not just specific cycle facilities.
- Wherever possible, aim to minimise energy loss through stopping, hills and sharp corners; cyclists shouldn’t be required to dismount on cycle routes. A cycle route will not be convenient if cyclists are required to stop or give way frequently.
- Where segregation of traffic is appropriate this should be achieved through reallocation of road space – taking space from the footway should be the last resort.

• Ensure the design of the route enables it to be used effectively in the dark and in poor weather.
• Take account of the real world behaviour of all users – including how pedestrians and drivers may interact with cyclists and vice versa.
• Facilities for cyclists must not only be safe, but they must be perceived by users to be safe. Both the risk and fear of crime can be reduced by allowing long sight lines, removing hiding places along routes, providing adequate lighting, and the presence of natural surveillance from nearby properties or other users.
• Wherever possible, pedestrian and cycle paths should be separated out, as shared paths create conflicts between the two and undermine safety.
• Wherever possible cycle paths should link in with the existing cycle path network.
• Ensure that cycle routes are practical to use. For example they need to be easy to get onto and off from, and the gradient needs to be considered in order to ensure they are not overly steep or circuitous.

5.8 More detailed guidance on the design of cycle routes is set out in:

It is also recommended that reference is made to the council’s Cycle Strategy when designing new development. In particular the need to connect into the principal cycle corridors that have been identified.

https://www.basingstoke.gov.uk/cyclesstrategy

Highway Design

5.9 The highway makes up a large proportion of the public realm, and improving the design of streets will have a significant role in improving the quality of the built environment. While it is important to be aware of the potential for the street design to influence travel choice, it must be remembered that public life is concentrated in them, and that consequently they are places for interacting, playing and relaxing, not just the sole preserve of vehicles.

More sustainable and attractive places can be created by:
• dispersing traffic safely and at slow speeds
• minimising the need for traffic-dominated roads within residential neighbourhoods
• dispersing traffic can be achieved by creating a more permeable layout, with drivers being offered more choice of possible routes.

5.10 The design of the street can also encourage drivers to reduce their speed by:
• enclosing the street with building frontages
• tight bends, frequent junctions and visual narrowings
• reducing the visual dominance of the road, with it becoming
‘lost’ in the overall design and treatment of the space
• using raised tables as continuation of footways at crossings and junctions.

5.11 Buildings, landscaping, surfacing and junction design can therefore all contribute towards reducing vehicle speed and making the development more pedestrian-friendly.

5.12 It is important to ensure that the highway design functions effectively. For example, it is necessary to ensure that streets and spaces can accommodate refuse and delivery vehicles and can be serviced in a practical manner. This is potentially another reason for adopting a cautious approach towards culs-de-sac, as they often involve a need for turning heads, which are then occupied by parking, making manoeuvrability difficult. Therefore, from a highways perspective it is preferable if culs-de-sac are designed in such a manner that larger vehicles can enter and leave in a forward gear (e.g. a looped layout or where there is a central open space to turn around).

5.13 Tracking/vehicle swept paths will also be required to ensure that the movement network can accommodate refuse collection and emergency vehicles. For detailed guidance on the design of residential streets, please consult the government’s ‘Manual for Streets’ and Hampshire County Council’s Companion Guide to Manual for Streets.

Key design principles – movement and walkability

MW2 – Foot and cycle path provision needs to be emphasised and must be given at least as much attention as provision for motor vehicles.

MW3 – Ensure foot and cycle paths are safe and user friendly.

MW4 – Ensure streets are public spaces design primarily for people and are not overly dominated by vehicular traffic.

MW5 – Design streets so that they naturally slow traffic speeds.
Section 6 - Arrangement of buildings and creation of spaces

6.1 Once the grid, block structure and key routes and connections have been established it is necessary to ensure that the buildings are arranged effectively within the structure which has been established. It will be necessary to create an attractive, uplifting townscape, with streets and spaces which can be enjoyed by the people using them.

Continuous, active frontages

6.2 Buildings must be arranged to create active and continuous frontages to the public realm wherever possible. Design features which facilitate active frontages are:

- outward facing development, with fronts addressing the public realm
- frequent doors and windows at ground floor level
- clear, accessible and prominent entrances to buildings
- balconies and features such as bay windows
- large amounts of glazing
- outside tables and chairs in connection with suitable uses (e.g. restaurants)
- a sense of rhythm and movement through regular repetition of certain features such as projecting gables or street trees.

This is an example of active frontages in the centre of Basingstoke, with outward facing development fronting onto streets, with large windows, outside seating, which creates an attractive street.
Active uses such as shops, restaurants and cafes are particularly conducive to active frontages. Other commercial uses can also be suitable, such as offices.

Residential development needs to have active frontages, but must be carefully designed in order to retain sufficient privacy for the occupants. For example, defensible space along the frontage and/or front gardens allow privacy to be increased whilst also ensuring an attractive interface with the public realm.

Establishing a consistent building line is also important in terms of achieving continuity of frontage. While some variety in the building line is not necessarily harmful, and can sometimes be helpful in terms of providing visual interest, it is important to ensure that incongruous relationships are avoided.

It is vital to avoid features which undermine the achievement of active frontages. Often this will stem from layouts and designs resulting in sides or backs of buildings, service areas, car parks and large areas of blank walls facing the public realm.

Where there are necessary breaks in the continuity of frontage, i.e. where it is required for practical purposes, appropriate means of boundary treatment such as brick walls or high quality fencing can be used to tie the buildings...
together, screen private areas, and secure gardens.

Density

6.8 The density of development will have a big impact on the arrangement of buildings and the type of spaces they create. It will also hugely influence the character and sustainability credentials of the proposed development.

6.9 In general terms urban design principles encourage an ambitious approach to density, as this is considered to be beneficial in terms of:

- ensuring efficient use of land
- preventing urban sprawl
- supporting a range of uses
- increasing the viability and hence availability of public transport
- encouraging social interaction.

6.10 However, this needs to be approached in a sensitive manner and it is vital to ensure that the occupants of buildings still have a reasonable degree of privacy and tranquillity.

6.11 Furthermore, the density of proposed development needs to be responsive to the context. For example, raising density levels in central areas, particularly around transport interchanges is generally encouraged in principle. However, in suburban and rural areas the density levels will need to be sympathetic to the character of the area and have due regard to the density of development defining those localities.

This is an example of fairly high density development in a relatively central part of Basingstoke, which avoids being over-scaled and provides space for good quality open space.
6.12 In addition, the density levels need to be well related to the overall design concept. For example, large, high density blocks within a very traditionally designed development may be inappropriate unless they can be very sensitively integrated. High density development also shouldn’t be construed as inevitably requiring large or tall buildings, as densities can be raised through techniques such as small blocks of flats or terraces.

6.13 Therefore, while the Local Plan does not set specific density targets/requirements, and an ambitious approach to density is encouraged, this needs to be balanced against ensuring that such an approach is sympathetic to the context, the quality of life for the inhabitants, and the effect the density has on the overall design concept.

Mixing uses

6.14 Mixing uses is a key urban design principle. This is important for ensuring vitality and vibrancy, encouraging the creation of healthy communities and underpinning sustainable patterns of development by reducing the need to travel by car.

6.15 Certain uses also depend on being effectively integrated with each other, for example office uses ideally need to be well related to other uses such as shops, bars, restaurants, cafes, gymnasiums, public transport and childcare facilities.

This is an example of mixed-use development in Basingstoke, which helps in terms of creating an active frontage and hence brings more vitality and vibrancy to the street scene and the local area.
6.16 However, an important general principle in relation to mixing uses is ensuring that the various uses are compatible, both in a particular locality and/or within individual buildings.

Bringing life to spaces

6.17 In addition to mixing uses, and particularly in terms of encouraging uses such as shops, restaurants, pubs and other entertainment venues in central areas of settlements, it is also necessary to provide facilities which support a convivial atmosphere, public use of spaces and add to visual interest. An important part of this is taking opportunities to provide features such as outside tables, chairs and benches.

6.18 Opportunities should also be taken to incorporate other features which enhance the attractiveness and atmosphere of streets, such as public art, fountains and pocket parks. Such features, along with spaces for street performances will further encourage people to spend time in streets and contribute to an uplifting atmosphere.

6.19 The design of such spaces needs to ensure they are safe and accessible for all users, and minimise risks of anti-social behaviour.

7 It is important to remember that such features may need planning permission and/or a highways licence.
Enclosure

6.20 An enclosed public realm is necessary in order to give clear definition to the townscape, and is important from a psychological standpoint as it creates a feeling of intimacy and security, which encourages walking and cycling. This means that it is vital to ensure that spaces are defined by a continuous building line, which comprises buildings of sufficient height relative to the street.

6.21 Various ratios of building height to street width have been recommended in different pieces of urban design guidance, for example, the urban design compendium refers to a ratio of 1:15 to 1:3 as being generally effective, and this provides a general guide in terms of effective building height to street width relationships. However, this needs to be considered in a flexible manner, taking into account the context and type of development proposed. In addition, features such as street trees can be very important in terms of providing enclosure.

6.22 Beyond the spatial aspects of enclosure, there is also an important visual dimension. Part of the process of achieving a suitable level of enclosure relies on providing a suitable sense of verticality, as horizontality is generally less interesting visually, and essentially reads as background, whereas the contrast created by verticals is more stimulating. Vertical features can be achieved through various mechanisms, such narrow frontages.

In this example from London, there is a high degree of enclosure, stemming from a combination of building height, street width, tree planting and the verticality of the entrance features.
chimneys and double height projecting elements such as double height bay windows.

6.23 The degree of enclosure needs to be carefully related to the importance of the street, for example the level of enclosure is likely to be higher in more central and important streets. For local residential streets the degree of enclosure is likely to be less, though should still incorporate some vertical features such as chimneys, double height bay windows or street trees.

Variety

6.24 Variations in the townscape provides opportunities to create visual interest, and can also improve legibility by acting as markers at important locations. There are three main types of building which create townscape variety, each performing a different role in improving legibility:

- Landmark Buildings – visible both within the site and the surrounding area, aid wider-scale orientation.
- Marker Buildings – visually distinct from the surrounding buildings, and orientation in the local context.
- Terminal Buildings – a building which terminates a view.

6.25 Landmark buildings tend to be taller than the surrounding development, as they need to be visually prominent. However, marker and terminal buildings only need to be conspicuous and stand out in the local area. This can be achieved through changes in height, but also through changes in elevational treatment or materials. Given the importance and prominence of these buildings they need to be very high quality.

6.26 It is also important to consider the concept of background and foreground buildings. This theory is predicated on the concept that some buildings are designed to be more prominent and eye catching than others. A street with no foreground buildings is likely to be very bland and unsuccessful in urban design terms, whereas a street with too many foreground buildings is likely to be visually chaotic. Consequently, the goal is often to strike a balance, with most buildings being background buildings, but some foreground buildings in order to create visual interest.

Corners

6.27 When arranging buildings to form effective blocks, the corners will have a significant bearing on the continuity of the built form.

6.28 Often this issue is only addressed in a superficial manner, for example by adding some windows or decorative feature to a side elevation. However, a more holistic solution must be utilised. The block should be arranged to ensure that side elevations/blank walls do not face directly onto important streets, and the design needs to
This development in Basingstoke incorporates specific corner features throughout the scheme. This helps improve the continuity of the frontages and enhances the architectural quality of the design.

In this example from the Fairfields Conservation Area in Basingstoke, a strong sense of rhythm has been achieved through the regular repetition of the gable features. This helps improve the continuity of the frontage and enhances the architectural quality of the design.

6.29 Streets need to convey a sense of movement in visual terms, which often requires the repetition of certain architectural features in order to draw the eye along. This principle can apply to either a street or an individual building.

6.30 Generally this will need to be based on the repetition of certain vertical features. These features do not need to be identical, but should have common characteristics, for example, a street defined by narrow frontages will create rhythm, but the frontages do not need to be the same.

Views and vistas

6.31 Vistas are framed views, and this requires the designer to consider how the buildings and
planting can be arranged and located in order to create successful vistas. In so doing it is necessary to have particular regard to views from key vantage points, such as site entrances.

6.32 It is important to ensure that vistas are not overly long or meandering, and that they are suitably framed and terminated. Vistas need to be terminated with high quality, distinctive buildings, mature planting or frame an attractive long view (such as out into the countryside).

6.33 The location of buildings should also consider the views into and out of a site. For example, buildings should be located where they can utilise attractive views over the countryside. Conversely, attractive views from the public realm should not be blocked by new development.

Key design principles - arrangement of buildings and spaces

ABS1 – Provide continuous, active frontages.
ABS2 – Ensure density responds positively to the context and character of the proposed development.
ABS3 – Mix uses where possible, but in a manner which ensures they are compatible.
ABS4 – Ensure streets and spaces benefit from suitable levels of enclosure.
ABS5 – Provide a positive interface with the public realm, and ensure natural features are provided along frontages.
ABS6 – Buildings need to turn corners effectively, specific corner building designs are likely to be needed, especially in large scale development.
ABS7 – The buildings along streets needs to convey a sense of movement, this is generally provided through creating rhythm and using repetition of certain features.
ABS8 – The townscape needs variety, which requires the inclusion of some more prominent and distinctive buildings.

Green Infrastructure

Landscape design

6.34 High quality landscape design is fundamental to the creation of high quality spaces and an attractive public realm, and hence is vital from an urban design perspective. Therefore, it is recommended that a Landscape Architect is engaged to design the spaces around new development.

6.35 The goal of the design process must be to ensure that the external spaces are visually attractive, respond positively to the context, support the overall design concept, and create a high quality environment for people.

Open space

6.36 It is important to ensure that development fronts onto areas of open space, with active frontages overlooking it. This ensures that there is surveillance of the open space,
reduces antisocial behaviour within those spaces and improves the outlook for the occupants of the buildings.

6.37 It is also vital to ensure that the role and function of the open space within the layout is considered and that the design of the open space itself will ensure the safety of the users of the facility and neighbouring residents and minimise risks of anti-social behaviour. For example, ensure that open spaces such as kickabout areas are not located in positions whereby there will be conflicts created with housing, parking areas or roads.

Natural features

6.38 Research in relation to environmental psychology has shown that views of the natural environment significantly increases happiness levels and reduces stress. Therefore, it is important to try and incorporate soft landscaping (including trees and hedging) into new development, and ensure it is in prominent positions in order to improve feelings of wellbeing. Furthermore, the positive feelings created by landscaping are maximised where it is more informally arranged, and where trees have broad crown spreads.

Trees

6.39 There are numerous wider benefits to tree planting, including:

In this example from the north of Basingstoke the trees and open space provide a wonderful setting and outlook for the development, creating a very uplifting environment for the residents.
• improvements in air quality
• urban cooling
• Solar shading
• biodiversity
• green infrastructure
• storm water attenuation.

6.40 Consequently, the site planning process should protect good quality existing trees wherever possible and ensure that opportunities are taken for new tree planting, especially in prominent positions. If any trees need to be removed then replacement planting will be necessary.

6.41 It is important to ensure that the buildings are arranged appropriately to allow for suitable tree planting. The design process therefore needs to consider species choice and building layout so that trees and buildings do not conflict with one another.

6.42 It will be important to ensure that suitable tree species for the site and context are selected, and that they are adequately maintained during the establishment period.

6.43 In addition, species will need to be chosen to ensure adequate diversity and resilience to pests, disease and climate change, both within the development site and across the wider landscape.

6.44 New development should be designed in such a way that prominent retained trees, groups of trees and woodlands are located and integrated into areas of open space, rather than being incorporated into private gardens. To safeguard woodlands, adequate buffers
must be provided to separate it from nearby development.

6.45 It is likely that specialist arboricultural advice will be required in terms of assessing existing trees, setting out appropriate protective measures, and concerning what form of new planting will be suitable. It will also be necessary to consider how the proposed tree planting will be compatible with constraints such as nearby infrastructure.

Biodiversity

6.46 The arrangement of built form needs to protect existing biodiversity features, and maintain green/habitat corridors. In addition, the arrangement of new development needs to have a successful relationship with existing habitats, for example by ensuring that these are retained and that new development does not back onto important woodlands and hedgerows, thereby avoiding disposal of garden waste into these habitats and maintaining a suitable buffer to enable such habitats to be accessed and managed.

6.47 New landscaping also needs to have regard to how it can most effectively provide enhancements for biodiversity.

Interface with the public realm

6.48 The relationship between the frontage and the pavement edge will have a significant impact on the character of the streets and spaces.

6.49 Following on from the reference above to the importance of natural features, it is important to ensure that planting is visually prominent, and hence needs to be provided along frontages.

6.50 It will be important to ensure that the interface with the public realm does not undermine the living environment of adjacent development and ensures a sense of privacy for the occupants. The building line should be designed with a 1-3 metres privacy zone between windows and the pedestrian routes. This also has the benefit of providing space for planting, which will also contribute to the level of privacy enjoyed by the occupants.

6.51 The primary means of access should be from the street. Entrances should be visible and frequent along the street in order to ensure a direct relationship between the buildings and the street.

Topography

6.52 Topography provides both opportunities and constraints for new development. For example, it can create interesting and dramatic layouts and buildings, but can also result in overly prominent development (for example in the case of an elevated site) and increase development costs.

6.53 New development must respond positively to the existing landform and minimise the extent of any earthworks.
New development proposed on elevated sites needs to be carefully considered in order to ensure that it doesn’t have a detrimental impact on the character of the area and may be inappropriate in some circumstances, particularly where the site is important in landscape terms or contributes positively to the setting of any nearby settlement, unless the development of the site can be robustly justified. Where development can be justified on elevated sites, it must not be on, or obscure, the ridge line, except in exceptional circumstances. The degree of justification required will need to be proportionate to the importance of the site in question in relation to the character of the area.

6.54 Generally it is considered that new development should step down slopes as opposed to traversing across. This is considered a more appropriate way of reflecting and expressing the landform. This approach should also minimise the need for unattractive features such as large retaining walls.

6.55 Any changes which need to be made to the landform should appear as natural as possible. Balance cuts into the land with fill, instead of only using cuts or fill alone.

6.56 New development should take the opportunities created by sloping land to incorporate features such as undercroft/underground car parking in order to benefit the scheme as a whole.

↑

In this example from Basingstoke the buildings step down the slope. This reflects the landscape character of the area and increases the visual interest of the street scene.
6.57 The topography can also have significant impacts on the effects created by the arrangements of buildings, for example, locating a building on higher ground is likely to accentuate the perception of its scale.

6.58 Sloping sites often result in the need for retaining walls. It is important to consider from the outset where these will need to be, how they will impact on the layout and the visual effects of such features.

6.59 Where an application is submitted for development on a sloping site, it is recommended that details are provided showing existing and proposed levels. This is important in terms of being able to assess visual impact of the proposal, and how it will relate to any neighbouring development.

Key design principles – arrangement of buildings and spaces

ABS9 – Ensure open space is integrated effectively and that the arrangement and design of buildings responds positively to it (i.e. the buildings look onto the open space).

ABS10 – Protect and incorporate natural features, these need to be placed in prominent positions and ensure that the arrangement and design of buildings responds positively to these features.

ABS11 – Ensure that the arrangement of new development prevents harm to biodiversity.

ABS12 – Respond positively to the topography.

ABS13 – Ensure that the function of spaces are clearly defined and that they are designed to reflect that function.

Maintenance and protection of spaces

6.60 The provision of open spaces has a significant impact on the character and identity of places (village greens for example). However, open spaces which have no clearly defined function often fail to properly utilise their potential to have a positive influence on new development, especially if they are used inappropriately and poorly maintained. It is also vital to avoid SLOAP (Space Left Over After Planning).

6.61 Therefore, it is vital that open spaces and landscape features are well defined, both in relation to their physical layout and also their function. These spaces must be effective in meeting their functional requirements in order to count towards meeting the council’s green infrastructure requirements (including open space standards). Open spaces and landscape features also need to be located and arranged in a
manner which facilitates their efficient and effective maintenance.

6.62 A common problem within layouts is where attempts are made to create small areas of open space in order to provide focal points. However, if these have no clear function, and comprise hardstanding, there is a danger of them becoming areas for inappropriate car parking. As a result such spaces then need to be protected by bollards and can become superfluous spaces which don’t contribute positively to the layout. Therefore, it is recommended that the function of such spaces is considered and the design needs to clearly reflect that function.

6.63 In addition, landscape features such as planting areas and grass verges need to be adequately protected and maintained. For example, timber fences often require replacement and brick walls need to be repaired. The responsibility for this should be incorporated into the terms of management agreements for open spaces.

6.64 The use of attractive, but also durable, protection for landscape features is also recommended, for example estate railing has been used successfully to define edges, prevent parking on grass verges, and ensure that a high standard of visual amenity is preserved.

Specific types of building arrangements

6.65 The subsection below considers certain types of specific building arrangements which often entail consideration of particular issues, and hence go beyond the general principles set out above.

Rural arrangements

6.66 The following should be considered when designing rural layouts:

- Avoid suburban style layouts, i.e. which contain lots of semi-detached properties with attached/integral garages.
- Rural arrangements are often based on detached houses and short terraces/rows of rural style houses.
- Space in villages is traditionally quite clearly defined, so open undefined frontages (which are particularly characteristic of suburbs) should be avoided.
- It is important to consider how front boundaries will be defined, having particular regard to how this has traditionally been done in the local area.
- There is often quite a lot of variety between the style and appearance of the houses (reflective of the iterative development of many villages)
- Buildings are often located quite close to the street, but there will be a variety of relationships with the street, i.e. some houses may be set back from the road further than others.
- Consider incorporating specific rural arrangements such as farmyard style courtyards.
- It may also be appropriate to incorporate centrally located areas of green space. Traditionally these can take on a wide variety of shapes and sizes.

Key design principles – arrangement of buildings and spaces

ABS14 - Ensure that rural development has a rural as opposed to suburban character, and reflects the local context.

Commercial development layouts

6.67 The layout and design of new development will be expected to front buildings onto the public realm and enclose external spaces, such as yards, external storage areas, waste disposal facilities and car parks, behind them.

This example of a rural style layout involves a very clear definition of space and incorporates rural features such as a village green and a courtyard layout in the top right corner. However, the layout still incorporates important urban design principles such as perimeter blocks and buildings which turn corners effectively.
6.68 The public ‘fronts’ of buildings require the most architectural attention, and the frontage must be clearly defined, with as many active features as possible. For example, even with industrial uses this can be achieved by locating any ancillary office functions to the front of the building, which will naturally provide greater articulation in the form of windows etc.

Pedestrian/visitor entrances should also be located to the front, and this should be expressed architecturally in order to convey that this is the front of the building.

6.69 For new industrial or logistics developments it will be expected that plot ratios will generally be between 35 to 40%, and no greater than 50% on any one plot. Planning applications to extend or provide new buildings within existing industrial plots need to maintain plot ratios below 50%.

6.70 Landscaping can have a dramatic impact upon the appearance of office, industrial, logistics development and will be an essential natural foil to the scale and appearance of such buildings, while also improving the environment for employees and visitors. The following principles should be applied in relation to the landscape elements of such sites:

This example from Basingstoke shows commercial development which addresses the public realm, giving clear definition to the street. The site and its surroundings are also verdant and parking and service areas are located away from the frontage.
- it is essential to consider at the outset how landscaping will be used positively, to integrate the building within its surroundings.
- the type, size and location of planting must be appropriate to the scale and layout of the plot and buildings. Small, narrow and isolated planting areas are of limited value, and will not be able to create an acceptable landscape framework.
- Existing tree belts, hedgerows and other biodiversity features will be important features around which to structure the layout of new development.
- In urban areas, where land is at a premium, it is essential that new landscaping is used where it will have the most positive effect.

6.71 Large areas of car parking must be subdivided with tree and shrub planting. This applies particularly where car parks are visible from the public realm on ‘pavilion’ type development, but also to large car parks provided within perimeter blocks.

6.72 Boundary treatments alongside streets, roads, footpaths or other public areas will need to provide permanent, effective screening to any service yards, storage areas, and car parks, etc. This screening must be attractive and practicable.

6.73 Poor quality, badly sited, or excessive signage can have an adverse impact upon the image of both the wider area. Signage must be identified and ‘designed in’ from the outset. Signage can be designed as part of front elevations where buildings face, and are close to, the street.

6.74 As a general guide, one sign per plot, if sited carefully, should be sufficient to identify relevant businesses. Where mounted on buildings, signs should be framed within the elevation and must not protrude beyond walls, eaves, roof verges, and other structural elements. Signage should not be excessively large or prominent and needs to be consistent with the overall design concept for the site.

6.75 In rural areas the following principles should be followed in order to ensure that new commercial development is sympathetic to the context:

- The architecture of traditional farm buildings can offer a useful blueprint for new commercial buildings in rural areas.
- Alternatively, designs which respond to the natural environment are another means of ensuring the architecture is locally distinctive, for example by using sloping and/or green roofs.
- It is vital that new commercial development is integrated within the local topography by setting buildings, yards and car parks within a clearly defined landscape framework. Other than in the centres of some of the larger villages, the characteristic pattern of development in the borough’s rural areas is one where the buildings are set within the
landscape and where the landscape is dominant.

- In seeking to reduce the visual impact of new commercial development in the countryside, breaking the skyline with buildings, and excessive cut and fill of the natural ground, should be avoided.

- In locations where new commercial buildings are visible in longer views, cladding materials need to be visually recessive, with dark and non-reflective finishes generally being more appropriate than light colours. Light colours are more prominent over longer distances and are less likely to be characteristic in the landscape setting of the rural areas. Light colours can also make a building appear larger than darker, more sombre colours.
Section 7 - Cycle storage and vehicle parking

Cycle storage

7.1 The quality and location of cycle parking must encourage this mode of travel. Cycle parking needs to be incorporated in new development to a level which accords with the council's adopted parking standards SPD.

7.2 The general principles underpinning the provision of cycle storage facilities are as follows:

- it needs to be accessible and convenient: the storage space should be as close as possible to the destination entrance, prominently located, with plenty of space to get bikes in and out, without unnecessary detours or flights of steps
- there needs to be good natural surveillance
- it needs to be secure against theft and vandalism, and appropriate to the type of area and length of stay expected
- parking stands should enable the bicycle frame and at least one wheel to be locked, catering for different sizes and shapes of bikes
- longer stay facilities need to be covered, well-lit and have CCTV, where practical/feasible
- where two-tier parking is introduced, low-level parking should be provided for the convenience of those who are unable to lift their cycles
- the facilities provided needs to be free of charge, unless a charge can be robustly justified.
- there needs to be sufficient capacity for existing peak demand plus future growth
- the facilities need to be clean and well maintained
- ensure there is adequate provision at locations likely to draw large numbers of people such as train and bus stations, shopping centres and employment areas.

7.3 More specific design guidance is available via the following link:

7.4 It is also recommended that consideration is given to using street pods (or similar device) for the provision of cycle storage, as they offer improved levels of security.

7.5 Many of the factors above are essentially practical considerations. However, from a more aesthetic perspective, the following principles need to be employed when providing cycle storage:

- Wherever possible it is recommended that cycle storage is provided in high quality, attractive storage structures.
• In streets, cycle storage is best located where it is not visually or physically intrusive, but still in a prominent enough position to ensure surveillance for security purposes.
• The visual impact of cycle stands can be reduced if placed between other street furniture, such as tree planting, benches and bus stops.
• Opportunities should be considered to incorporate high quality, distinctive cycle storage, which can enhance the character of the area, for example the paperclip cycle racks in Minneapolis USA.
• When provided as part of new development cycle storage needs to be incorporated in a manner which is consistent with the design and character of the proposed development. For example, in specially designed, secure cycle storage structures, which reflect the architecture of the wider scheme.

The images above show an example of high quality cycle storage in Winchester (Railway Station). The structure itself is attractive, clean and well maintained. It is also located in a prominent position where it benefits from high levels of surveillance.

Key design principles – cycle storage

CSVP1 – cycle storage needs to be safe, user friendly, attractive and well integrated with the buildings and spaces it relates to.

General design principles for vehicle parking provision

7.6 Where, and how, cars are parked can have a significant impact on both the quality of the proposed design and the character of the area. The following principles need to
underpin parking provision from an urban design perspective, namely:

- ensure that parking does not dominate the public realm
- integrate parking in a manner which is sympathetic to the design of the proposed development and the character of the area
- prevent large areas of parking, especially along frontages
- provide sufficient and suitable soft landscaping and tree planting around and within parking areas, particularly any large areas of hardstanding.

7.7 From a highway perspective it is important to provide the right number of the right spaces in the right places. In addition, it is important to ensure that the parking provision provided is practical and convenient to use. This is also intertwined with the need to consider measures to ensure that the form of parking provision provided is not misused. If the means of providing parking is not effective in highways terms then it is also likely to be unsuccessful from an urban design perspective, for example by resulting in extensive parking on pavements.

7.8 This document addresses the more aesthetic aspects of parking provision in relation to design. Please refer to the council’s Parking SPD for more detail in relation to the parking standards (in terms of numbers and sizes of spaces) and the more technical aspects of parking provision.

Residential development

7.9 For residential development, the main types of car parking arrangement are considered to be as follows:

- public squares/central open space
- central reservation parking
- private parking areas within curtilage
- parking courts
- undercroft or basement parking
- non-curtilage parking areas.

In larger developments it is likely that a range of different parking solutions will need to be employed. This will help ensure that the design is flexible and helps provide variety.

Public squares/central open space

7.10 Parking around a public square or central area of open space can have the benefit of incorporating parking within an area which can also provide townscape and/or recreational benefits.

7.11 It is important to ensure that the movement network still makes provision for sufficient space for it to operate effectively, even when the parking is in-situ i.e. there needs to be sufficient space for the required range of vehicles to manoeuvre around the parked vehicles.
Central reservation parking

7.12 Parking can be provided within a central reservation with cars arranged both sides of a strip dividing traffic flows. Significant amounts of landscaping must be incorporated within and around the parking area in order to reduce its visual impact.

7.13 This option needs to be used carefully as it can result in streets being dominated by car parking, but this approach does have the benefit of keeping the frontage unencumbered by parking spaces. It also has the advantage of providing parking to the front of houses, in a position which is clearly visible from the host dwelling. This option also potentially supports higher densities, as it means there is less need for spaces to the side of dwellings. This approach also encourages activity within the street.

7.14 It will also be necessary to ensure that the road width around the parking bays is sufficient for vehicles to pass and for cars to manoeuvre in and out of the spaces.

Parking areas within curtilage

7.15 Providing suitable parking within the curtilage is an important way of preventing inappropriate on street parking. Providing parking within the curtilage also has the advantage of facilitating movement of people going from the front entrance to their car, creating more activity within the street scene. However, it is
important that the car parking and any garaging does not create a negative interface with the public realm.

7.16 Where parking is provided within the curtilage, this should wherever possible be located to the side of the property, set back from the main building line. Parking to the sides is preferable to parking within/along the frontage of properties, as the latter approach often makes the parking overly prominent, undermines the appearance of the houses and expands the street width, making effective enclosure of the street difficult.

7.17 It is important to think about the practicalities of driveways and to remember that they are multi-use spaces. For example, they need to be sufficiently wide for bikes and bins to be moved past parked vehicles. It is also necessary to consider the practical implications of tandem parking, as this can often lead to vehicles being parked on the highway.

7.18 Where garages are provided, the design needs to be high quality, and respond positively to the context and the design of the other buildings within the development. Garages must not be excessively large in scale or overly prominent. For example, they must not be in front of the dwellings and must not dominate the entrance to a development or become a focal point at the end of a vista. More specific stipulations in relation to the requirements concerning garages are set out in the Council’s Parking Standards SPD.

In this example in Basingstoke the side parking provides a very effective mechanism for maintaining the continuity of the frontage and minimising its impact on the street scene.
Parking Courts

7.19 Parking courts can potentially constitute an effective means of ensuring that car parking does not dominate the frontages of new development. This can be achieved by locating the parking courts either to the rear or side of the properties.

7.20 Parking courts need to be clearly related to and overlooked by the buildings they serve. They should also ideally have a controlled access, through a break in the continuous street frontage or under a carriage arch.

7.21 Parking Courts need to be convenient to use and feel safe and secure. This will require direct access to/from the surrounding dwellings and the provision of adequate lighting (dusk to dawn energy efficient lighting to appropriate levels). Boundary treatment may need to be designed to allow observation from dwellings over the parking spaces. Parking courts should not be located in inaccessible areas at the extremity of the development.

7.22 Where parking courts are provided to the side of the frontage then it will be important to ensure that the parking is integrated in a manner which does not undermine the continuity of the frontage. In addition, the car parking can be partially hidden by providing extensive landscaping around the perimeter of the parking court.

7.23 There are two ways to design parking courts:

- As private places, with a single way in/out that is clearly overlooked from dwellings. Generally this approach should only serve a relatively small cluster of dwellings.
- As semi-public places, with pedestrian routes passing through, and buildings within...
the court overlooking the parked cars and pedestrian routes. This approach demands extremely careful attention to design and materials to avoid these areas appearing functional and car dominated.

Undercroft and Basement Parking

7.24 Undercroft, basement or decked parking can also be an efficient means of accommodating cars, often within higher density residential schemes.

7.25 It is important that such parking does not make street elevations ‘dead’ and lifeless. One way of avoiding this is to make sure that the parking does not fill the whole of the front elevation of each unit, i.e. allowing for some active frontage at ground floor next to each parking space.

7.26 Undercroft or decked parking can be located behind single aspect flats to provide a more appropriate frontage.

7.27 It is important to ensure that undercroft parking is practical to use, as otherwise it will lead to on-street parking. This option is likely to be most effective in situations where there are on-street parking controls.

Non-curtilage parking

7.28 On street parking is a traditional means of providing parking, and has the advantage of facilitating a flexible and efficient means of providing supplementary vehicle parking. On street parking is also likely to provide a practical and sensible solution for short-term visitor parking and service vehicles.

7.29 However, on street parking can lead to very congested streets, with overly prominent parking, and should not be relied on- upon for the allocated parking provision i.e. it should only be used for visitor parking.

7.30 Where it is to be provided in new development, on-street parking must be considered at the outset in order to ensure it is effectively integrated into the design. If it is to be provided, then it should be in the form of laybys. These spaces should not erode the footways. There should also be tree planting provided along streets where layby parking is provided (in between the spaces, and hence allowing the footway to be unimpeded).

7.31 Such spaces should be distributed throughout the layout, and should also be incorporated in a manner which considers the role of the spaces within the layout, e.g. some visitor spaces/laybys should be provided near play areas/open spaces.

Commercial development

7.32 Commercial development is likely to involve more consolidated car parking areas than is the case with residential development, for example in the case of large supermarkets or office developments.

7.33 The main design principles in such instances are going to revolve around the location of such parking, and mitigating its
impact. In particular this means not locating the parking to the front of the building, where this would mean it is adjacent to the public realm. It also means it is necessary to ensure that sufficient planting is provided within and around the parking area in order to ensure its visual impact is sufficiently mitigated.

7.34 From a highways perspective, it is important to ensure that parking and servicing are considered in a co-ordinated manner, as the relationship between the two is likely to be very important. There also needs to be consideration in terms of how the parking and servicing arrangements will relate to external storage and waste areas, as conflicts between these different functions needs to be avoided.

7.35 It is easy to underestimate the amount of space which will be required for safe, suitable and convenient access for service vehicles. Therefore, it is important to consider at an early stage how proposals will accord with the Freight Transport Association’s (FTA) design guide. This provides detailed and comprehensive design standards with respect to manoeuvring of a range of rigid and articulated service vehicles.

7.36 Where sites adjoins the public highway, designers need to demonstrate that all service vehicles will be able to freely enter, turn and exit the development in forward gear (the FTA guide provides various example of suitable onsite turning facilities, etc.). It is also recommended that designers give early consideration to the provision of suitable access arrangements for the emergency services, the means of escape, as well the need to accommodate storage tanks and associate infrastructure for any required sprinkler systems, etc.

8https://www.shop.fta.co.uk/p-181-designing-for-deliveries-guide.aspx
Section 8 – High Quality Buildings

Design of individual buildings

8.1 Urban design principles do not seek to impose particular architectural styles. However, urban design principles do necessitate:

- high quality design of individual buildings
- design which responds positively to the context
- design which creates a distinctive character and sense of place.

8.2 Unimaginative, characterless design which has no regard to the context cannot be good design. If the surrounding development is not high quality or imbued with a distinctive character, then replicating that is also not good design: it is the designer’s role to help solve problems rather than replicate them. In such instances it will be necessary to take the opportunity any lack of strong character creates to raise design standards and help create a distinctive place. An existing lack of strong character also potentially creates an opportunity to pursue interesting architectural solutions in order to make places which are more characterful.

8.3 This section sets out some practical guidance to help ensure that the design of individual buildings achieves these objectives.

Important design concepts for individual buildings

Bulk and Massing

8.4 Bulk and massing has a significant impact on the design of the building and how well it relates to other buildings, the street scene and spaces in general. These concepts essentially relate to the general shape of the building and the visual impression it creates. Bulk focuses on the shape and how this is perceived, whereas the massing concerns the arrangement of the bulk of the building to create a certain visual effect.

8.5 In terms of designing buildings this means ensuring that the basic shape of the building, or combination of shapes, is attractive, balanced and elegant. This is likely to mean it is necessary to avoid very boxy/monolithic forms.

Combination of forms/shapes

8.6 Quite often the most successful approach to bulk and massing is through clustering/combining different forms or shapes, which come together to create a balanced composition of different elements. This allows the bulk of each element to be reduced, and then the various elements to be combined so that the massing is composed of a series of attractive elements.

8.7 In addition, combining forms can produce impressive and interesting effects, while
juxtaposing different forms can also create visual interest, though such an approach needs to be skilfully handled.

8.8 Even when a single shape is used to define a composition, there is often a need to incorporate a subsidiary shape, which needs to be well integrated with the overall design. Generally, similarity of shape, size and character is vital in terms of ensuring different parts of a building form a successful overall composition.

Scale

8.9 Scale refers to perception of size, and this is often understood in relative terms. Generally there are two types of scale:

- Generic – the size of building elements relative to other forms in its context e.g. the size of the building in relation to the building next to it.
- Human – the size of building elements or spaces relative to
the dimensions of human beings.

8.10 Scale is very important in urban design terms, as a fundamental principle of urban design involves seeking to create successful relationships between buildings, and also with the context generally, and if a building appears excessively large within the street scene or landscape context then that probably means it is over-scaled.

8.11 There are various techniques which can be employed in order to ensure that the scale of a building is appropriate, for example the massing of building will impact on the perception of its scale, as an unbroken boxy shape is likely to appear larger than the attractive combination smaller elements.

8.12 In addition, when designing residential buildings the perception of scale will often be affected by features such as ridges and eaves height, i.e. a building with low eaves will often appear smaller than the same sized building with a higher eaves line. Stepping back upper stories is another means of regulating the scale of buildings, particularly for larger structures.

The building in the centre of this photo from San Francisco displays an excellent approach to scale, bulk and massing, which is well related to the context. However, the white rendered building at the end of the row shows exactly how not to approach scale, bulk and massing.
8.13 Scale needs to be considered holistically. More specifically, the appropriateness of the scale of building will be influenced by various contextual factors such as topography, visibility and its relationship with natural features such as trees.

8.14 The use of the building can also be important in terms of our perception of scale, for example an important building from a social perspective sometimes has more scope to be larger, as this will seem appropriate for its function.

Proportions

8.15 Proportions are very similar to scale, though are focused on relationships within a larger whole as opposed to external factors. Therefore, proportions will have an important impact on the overall composition of the building. When proportions are right, the various elements of the building will appear harmonious and elegant.

8.16 Consideration of this principle can encompass various issues.
building is likely to appear poorly proportioned.

Complexity

8.17 Research in relation to environmental psychology has shown that the public respond most positively to buildings which exhibit a medium level of complexity. Therefore, it is important to ensure that buildings are visually interesting, but avoid designs which are overly plain, along with approaches which are excessively complicated.

Order and coherence

8.18 Additional important aesthetic principles which need to inform the design of buildings are the need for a sense of order and coherence. This isn’t to imply that this means that buildings need to be symmetrical, though that is a potential mechanism for achieving that goal. Rather this means that buildings need to repeat certain elements, and the different facets of the building need to be consistent with the overall design of the building. Consequently, the overall goal is a sense of unity, where all the different aspects of the design are well related to each other and the overall design concept.

In this example from Winchester, while the building is not symmetrical, the design is still ordered and coherent, with a consistency of form and proportions, while the materials reinforce the concept of a traditional form with a contemporary language.

8.19 Other ways of achieving order and coherence is to incorporate a hierarchy of visual features, for example it may be appropriate to create a focal point, for example an entrance, and then have subservient
features which are related to that, which will then serve to integrate the different elements of the design within an overall visual framework.

Harmony

8.20 Another important design principle is harmony. This principle relates back to that of coherence, in that it is predicated on the different aspects of the design having a positive relationship with one another. However, this does not imply that all of the different elements of the building need to be the same in terms of their character.

8.21 Harmonising similar elements creates a very clearly defined and calm composition. However, it is possible to harmonise contrasting elements, and this can create a dynamic and exciting composition. In such instances it is important to ensure that a balance is achieved between these different elements.

8.22 These principles also apply to the way in which the design of individual buildings need to relate to their context. For example, a street involving similar buildings will generally appear very harmonious. However, it is possible for streets to involve the use of contrasting buildings, provided the visual effect is balanced; indeed such an approach can be more interesting, and is typical of many older streets (such as those in South View, Basingstoke), where the streets have evolved over time to include a variety of building styles.

Space

8.23 Buildings need to have an appropriate amount of space around them, as buildings which fill too much space are likely to appear over-scaled and will make the street scene and public realm generally appear compressed and oppressive.

8.24 The size of the building is likely to govern how much space is needed around it, i.e. larger buildings generally need more space around them.

8.25 It is also important to consider what will occupy the space around the building, for example, if it is car parking, this is not likely to be nearly as effective as soft landscaping.

Key design principles – high quality buildings

HQB1 – The bulk and massing of buildings needs to be attractive, and well related to the context.
HQB2 – Ensure that the scale of buildings is well related to the context.
HQB3 – Buildings need to be well proportioned.
HQB4 – Designs need to be ordered, coherent, balanced and elegant.
Important elements of buildings

Entrances

8.26 Clearly defined entrances to buildings are important in terms of achieving active frontages, and in giving the street scene definition and rhythm. Entrances are also important in relation to the design of an individual building. In essence it is important that the entrance to the building is clearly defined and expressed visually. Prominent entrances also provide an opportunity to give some modulation to the façade.

8.27 The form of entrance chosen also needs to be carefully related to the design of the building and the wider context. For example, in some locations this is a distinctive characteristic, such as recessed or gabled porches in Victorian areas. Whereas the design of commercial buildings may involve expressing the entrance as an integral part of the

In this example from Basingstoke the entrance is emphasised and expressed by the form and articulation of the building.

In this example from Basingstoke the entrances to the dwellings are expressed by the projecting porches, which give definition to the façade and reinforce the character of the dwellings.
architecture (through its form and/or articulation).

8.28 In a residential context porches have an important role to play in the design of buildings from an urban design perspective, as they provide a mechanism for clearly signifying the entrance. They need to be high quality and designed in a manner which is consistent with the character of the overall design of the building (e.g. in relation to features such as form, materials and detailing).

Fenestration

8.29 Often referred to as the eyes of buildings, windows are an important element of the design and significant in urban design terms in relation to enlivening the facade and providing a successful relationship with the public realm by achieving active frontages.

8.30 The approach to the fenestration should be consistent with the overall design ethos for the building. For example, an arts and craft
design may have asymmetrical fenestration and varying window sizes, whereas a neo-classical design will generally need symmetrical fenestration and consistent window proportions. A contemporary design will also often involve using the fenestration to create interesting visual effects, for example through deep recesses.

Balconies

8.31 Balconies can have a very positive impact from an urban design perspective, as they facilitate the engagement of buildings with the public realm. Balconies also give the building a sense of modulation, which adds to its visual interest and improves the quality of the street scene. They also provide a valuable outdoor amenity space for the occupants.

8.32 However, the design of the balconies needs to be carefully related to the overall composition. Accordingly, it is important that the balconies are
an integral part of the design, and not an 'add-on' feature. Similarly, balconies are often also more successful if they are recessed into the building as they will be less exposed and feel more secluded for the occupants.

8.33 It is important to ensure that the balconies do not undermine the residential amenity of neighbours, so they should be designed in a manner which achieves some privacy between them, for example by using privacy screens along the sides of the balconies.

Roof-form

8.34 The design of roofs will have a significant impact on the appearance and character of buildings, along with their bulk, massing and scale, as well as how well they relate to the street scene and context in general.

8.35 Where roof shapes in an area are very consistent, then reflecting those shapes in new design can often help to ensure that new development is successfully integrated, even when utilising a different architectural style.

8.36 However, contemporary roof forms can often be incorporated provided they are sensitively related to the context. This is most likely to be successful where it involves reinterpreting a traditional, locally distinctive form as opposed to introducing an alien typology. For example, in an area characterised by gabled roofs, using a mono-pitched roof, or series of mono-pitches (of a similar angle/pitch to those in the locality) is likely to be more successful than a flat roof from a contextual perspective.

8.37 In addition, it should be noted that a variety of roof shapes can make for a more interesting street scene, and help to create a distinctive skyline.

Dormers

8.38 The impact of dormers on the shape, form and character of the roof needs to be carefully considered. In areas where there is a high degree of uniformity of roof design in which dormers are not present, then the incorporation of dormers can be unacceptable where they would be detrimental to the street scene.

8.39 Dormers must not dominate the roof, and need to complement the overall composition of the building(s) in terms of proportion, size, position, detailing and materials. Dormer windows must be well related to the windows below (e.g. either directly in line, or equidistant between windows where for example there is one dormer above two windows below), and be kept well away from the ridge and edges of the roof.

8.40 Very large dormers which dominate the roof are unlikely to be acceptable.
Rooflights

8.41 There are potential benefits to using rooflights as opposed to dormers, as they have less of an impact on the character and appearance of the roof.

8.42 Rooflights must not protrude significantly from the roof profile. They also need to be kept as small as possible so as not to dominate the roof. The quantum also needs to be kept to a minimum in order to reduce the impact on the visual appearance of the roof.

Service details and flues

8.43 Providing equipment for services, such as utility meter boxes, as well as features such as flues, is necessary but can undermine the quality of the architecture.

8.44 Services features should be hidden as much as possible, and located sympathetically from a design perspective. Ideally these should be incorporated as specifically designed elements which are consistent with the overall design of the building.

8.45 The need for flues should be considered as early as practical, and where possible they need to be incorporated in a manner which does not undermine the design of the buildings.

In this example from Overton the dormers are well related to both the existing fenestration, in terms of alignment, the roof form, in terms of their scale and location, and reinforce the overall design concept, through their traditional, gabled design.
Key design principles – high quality buildings

HQB5 – Entrances should be clearly expressed through the form and/or articulation of the building and/or high quality entrance features (such as porches which are consistent with the design of the building).

HQB6 – The fenestration needs to be consistent with and reinforce the character of the building.

HQB7 – Balconies need to be designed as an integral part of the architecture should be consistent with and reinforce the overall design concept.

HQB8 – Roofs need to respond positively to the overall design concept, the bulk, scale and massing of the building, and respond positively to the context.

HQB9 - Dormers must not dominate the roof, and must complement the overall composition of the building(s) in terms of proportion, size, position, fenestration, detailing and materials.
Sustainable design approaches

8.46 Turning to some more specific design approaches in order to improve the sustainability of buildings. The approach to this issue as set out in policy EM10 (and supporting text) of the ALP emphasises minimising energy consumption through the use of passive solutions such as appropriate orientation and improved insulation. However, the council is very keen to support more ambitious approaches.

8.47 The guidance below seeks to explain some of the design related considerations associated with sustainable building techniques and technologies and how they can be successfully incorporated in a manner which is sympathetic to the context.

Passive Solar Design

8.48 Passive solar design seeks to enhance natural light, improve energy efficiency (through maximising passive solar gain and minimising heat loss), and provide natural ventilation. The only truly effective opportunity to consider passive solar design is at the initial stage of the process, because matters such as layout, orientation, internal space design and landscaping...
are critical. The following considerations will help achieve effective passive solar design:

- **Orientation** – solar gain will be maximised by orientating the main glazed areas within 30 degrees of due south.
- **Room layout** – the main living/working rooms should be in the south facing part of buildings, with storage and lesser used rooms to the north.
- **Avoidance of overshadowing** – consideration needs to be given to the siting, spacing and height of buildings to minimise overshadowing of southern elevations by other buildings, structures or landscaping.
- **Window size and position** – north-facing windows need to be small and kept to a minimum. Larger windows/glazing on the south-facing elevations will increase solar heat gain, although summer overheating and winter heat loss are to be avoided.
- **Conservatories and Atria** – these need to be carefully designed to manage solar heat and ventilation. They should be effectively insulated from the main building to avoid problems of excessive heat losses and gains, but should not be heated in the winter.
- **Natural ventilation** – atria and internal ventilation stacks can be used to vent air as the building warms during the day, with cool air being drawn in through grills in the building façade.
- **Lighting** – avoidance of deep-plan internal layouts and the incorporation of rooflights, atria, light/sun pipes can all increase natural lighting and reduce the need for artificial lighting.
- **Thermal buffering** – unheated spaces, such as porches and garages, which are attached to the outside of heated rooms, can act as thermal buffers.
- **Landscaping** – this can be used as a buffer against prevailing cold winds and shading for summer cooling.

In this example from Rooksdon in Basingstoke, various features have been incorporated in order to help utilise passive solar gain, such as large windows, roof overhangs and louvers.
Solar Electricity - Photovoltaics (PV)

8.49 These convert the sun’s energy into electricity and can be incorporated on buildings as tiles, cladding or other roof covering. PV cells can be roof mounted or free standing, or integrated into the roof or facades of buildings through the use of solar shingles, solar slates or tiles, solar glass laminates and other solar building design solutions. PV cells come in a variety of shapes and colours, ranging from grey 'solar tiles' that look like roof tiles, to panels and transparent cells that can be used on conservatories and glass.

8.50 The generated electricity can be stored in batteries, powered direct to some appliances, or surplus energy fed into the National Grid supply.

8.51 Design considerations for photovoltaics include:

- PV systems need to be installed on a building with a roof or wall that faces within 90 degrees of due south and at an angle of between 20 and 40 degrees – the inclination and orientation affect performance.
- They should not be shaded by trees, buildings or other obstructions.
- They need to be ventilated.
- The need for sufficient areas of solar modules to produce the required energy output.
- They have the potential to be integrated as part of the materials of the building e.g. tiles, and this is preferable in design terms in order to ensure they are incorporated in a manner which is consistent with the overall design concept.
- Consideration must be given to visual impact – e.g. colour and materials, impact on sensitive buildings and locations such as listed buildings and conservation areas.
Water Usage

8.52 Reducing water usage is a key sustainability objective as set out in the Local Plan (specifically in relation to policy EM9). There are various technical mechanisms available in order to achieve this goal:

- effective plumbing design e.g. a gravity hot water system delivering low pressure water uses less water than a mains pressure hot water system.
- low flush, dual flush and dry composting toilets
- water efficient taps e.g. push taps, sensor taps or spray taps
- low-flow shower heads
- high efficiency dishwashers and washing machines
- rainwater harvesting systems
- grey and blackwater recycling
- water efficient landscaping e.g. ensure landscape design reduces the need for extensive watering, if watering is required use water efficient mechanisms, use plants which do not require large amounts of water.

Sustainable Drainage Systems (SUDS)

8.53 A Sustainable Drainage System is a set of measures to drain surface water in a more sustainable fashion than previous conventional techniques. The philosophy behind SUDS is to mimic as closely as possible the natural drainage from a site before development and to remove pollutants from the runoff. In this respect, appropriate landscaping techniques, including the minimisation of hard landscaping and, instead, the use of semi-permeable materials, can ensure that runoff is minimised and infiltration occurs in situ. SUDS can also incorporate drainage into reed beds, in order to collect, store and filter dirty water.

8.54 SUDS offer several key benefits including:

- reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream
- reducing the volume and the frequency of water flowing directly to watercourses or sewers from developed sites
- improving water quality over conventional water sewers by removing pollutants from diffuse sources
- reducing the demand for drinkable water through the use of rainwater harvesting to supply water for other uses
- improving amenity through the provision of public open spaces and wildlife habitats
- replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained
- use of semi-permeable materials that can provide improvements in the visual quality of public space.

8.55 To be effective, SUDS need to be properly designed and maintained, and the requirements for this will differ from conventional systems. It is therefore important that before
a scheme is implemented, the following should be considered:

- Early discussion with relevant stakeholders (e.g. including the HCC as Lead Local Flood Authority, Environment Agency and relevant local water company) in order to realise the optimum contribution from a sustainable approach
- Ground and groundwater conditions must be taken into account
- Drainage impact assessment undertaken to ensure that the possible impacts are understood and managed
- Long-term maintenance requirements are properly considered
- The findings of the Council’s Strategic Flood Risk Assessment (SFRA).

8.56 In addition, it should be noted that it is the responsibility of developers to make proper provision for surface water drainage to ground, water courses or surface water sewer. It must not be allowed to drain to the foul sewer, as this is the major contributor to sewer flooding.

Green Roofs

8.57 Green roofs are a good means of improving the sustainability credentials of buildings. They can form part of a site’s sustainable drainage system, increase thermal insulation, and are a good way of securing biodiversity contributions where there are limited opportunities for habitat creation around proposed buildings.

8.58 Similarly, there may be scope to incorporate roof gardens and green walls. These can be effective mechanisms for incorporating green infrastructure into urban environments while also improving the sustainability credentials of buildings.

Key design principles – high quality buildings

HQB10 – Ensure that the layout of new development and the design of buildings supports passive solar gain.

HQB11 – Incorporate renewable energy technologies where possible, in a manner which is sympathetic to the character of the area and the design of the proposed development.

HQB12 – Utilise water efficiency technologies and techniques.

HQB13 – Employ sustainable drainage systems wherever feasible.
Design guidance in relation to specific building types

8.59 This section turns to look at certain types of buildings more specifically, and aims to provide practical guidance to help inform their design and assessment.

Tall Buildings

Definition of tall buildings

8.60 For the purpose of this document, a tall building is defined as a building which is higher than 18 metres (approximately six storeys). This is considered to be an appropriate benchmark to determine whether a building is classified as being tall in light of the local context.

Role of tall buildings

8.61 The high profile nature of tall buildings means they can have a major impact upon the image of a place. If the quality of the building is of a high standard, then tall buildings can create a dynamic skyline, and a sense of vibrancy.

8.62 There are several advantages to having tall buildings in Basingstoke, they:

- create a visually stimulating and dynamic skyline
- reinforce the existing ‘vertical’ character of the town centre
- act as beacons for areas of regeneration
- stimulate further investment

This photograph shows the Skyline Plaza and Crown Heights buildings, which are significant landmarks in the centre of Basingstoke.
• improve the legibility of the town by signifying important areas
• improve the viability of public transport and local services
• maximise the efficient use of the land.

8.63 Therefore, high quality, distinctive tall buildings create an opportunity to enhance the character of Basingstoke town centre.

Assessing the impacts of tall buildings

• By their very nature, tall buildings will be very visually prominent, therefore, a very high standard of design is essential.
• Consider the impact on the streetscene, this is of most relevance in relation to the design of the base of the building, which needs to respond positively to the character of the area, but also relates to issues such as daylight reaching streets and funnelling wind through particular streets.

This diagram identifies what are considered to be the key shorter range views towards the existing area of tall buildings in Basingstoke town.

• In terms of topography, Basingstoke is situated on rolling hills which are typical of the Downs area. The openness and topography of the surrounding countryside creates long-distance views into and out of the town. The diagram below illustrates some of the principle long-distance views into the town, looking towards the tall buildings in the centre.

However, it should be noted that this is not an exhaustive list of all views of the town from the surrounding higher ground.
• It is vital to ensure that the impact of tall buildings is carefully considered in terms of views into, and out of the town, for example the potential for tall buildings to provide effective termination in relation to certain views, but also the need to
ensure that tall buildings don’t block views out towards important landscape features.

- Tall buildings can have a major impact upon the local area, and must therefore have particular consideration towards the sensitive character and setting of conservation areas and listed buildings; it is important that the design and location of tall buildings has regard to landmark historic buildings and that they do not block such views or detract from them by competing with the historic landmark.

- Tall buildings involve raising densities, therefore, they must be placed in sustainable locations, particularly in areas which are accessible and have good provision of public transport. Therefore, areas closest to the railway station and bus station are most likely to be appropriate for tall buildings.

- It is important that tall buildings do not overshadow or dominate open spaces.

8.64 Applications for new tall buildings will need to be supported by detailed assessment and analysis of the potential impacts. This will need to encompass consideration of the factors set out above along with any other relevant site specific and contextual factors.
Location and arrangement of Tall Buildings

8.65 Tall buildings should generally be located within the cluster strip to the south of the railway line in Basingstoke, as illustrated in the diagram below. Any exceptions to this must be fully explained and justified, particularly in relation to how the development responds to the local area. It should be emphasised that the tall buildings zone does not mean that all buildings in this area should be tall.

8.66 There are considered to be 3 clusters within the tall buildings zone. The most prominent is the combination of Skyline Plaza, Churchill Plaza and Crown Heights. This is quite a well-defined cluster, with Skyline Plaza being the tallest, but not appearing over-scaled in relation to the other two buildings. Any new buildings in that location should be integrated within this cluster, but it is considered that these should not compete with Skyline Plaza, but rather step down in order to ease the transition with the surrounding townscape.

8.67 The other two clusters are less well expressed, and more linear in character. The first is Basing View, which is particularly distinctive owing to the
presence of Fanum House. However, this building appears isolated and somewhat incongruous in relation to the rest of the cluster, and makes the grouping quite disparate and incoherent. The buildings within this cluster are also somewhat dated now, and the buildings are generally quite ‘slab-like’. Therefore, it is considered that this cluster would benefit from the sympathetic addition of other tall buildings and/or the refurbishment of the existing buildings in order to revitalise the locality, and give it greater visual interest.

8.68 The third cluster is to the south of Winterthur Way. This cluster is more compact than Basing View, and does not comprise any particularly prominent buildings. This group does not signify any particularly important function within the town, nor does there appear to be much scope to expand this cluster.

8.69 The following principles set out the more specific design considerations which should inform the location of tall buildings:

- Stand-alone tall buildings should be avoided, as they are likely to appear incongruous and dominate the surrounding built form.
- Widely spaced tall buildings are also likely to appear disordered and incoherent.
In light of the above, clusters of tall buildings are likely to be the most appropriate approach to their provision, and so the location of new tall buildings should reinforce and respond positively to existing clusters.

Clusters should be close enough to appear harmonious and well-related to each other. However, there does need to be sufficient space between the towers in order to ensure that the cluster does not become overly congested.

The spacing will need to be informed by the existing separation distances, but it is likely that at least approximately 25m between each building will be required.

The location and design of tall buildings needs to support the arrangement and legibility of the cluster.

Avoid regimented alignment of buildings.

It is possible to have multiple clusters of tall buildings, but each cluster needs to be coherent and distinct.

Within a cluster there is likely to be a building which is taller than the others, this should act as the centre point of the cluster, and the other buildings should be lower.

The buildings on the edge of the cluster need to drop down in height, and ideally should create a harmonious transition to the lower buildings and landscape features outside of the cluster.

The cluster needs to be visually coherent in terms of architectural language, form, materials, detailing and colour.

However, some variation in terms of form, height, materials and architectural language is important in terms of creating visual interest.

Design of individual buildings

The following design principles focus more specifically on the individual buildings themselves:

- Slender towers, rising above well-proportioned and articulated base buildings are likely to be the most elegant solutions.
- Avoid free-standing towers without bases or a direct relationship to the street.
- Avoid monolithic, bulky towers with ‘slab-like’ floor plates.
- The form of the building should be interesting, well expressed and coherent.
- The design of the base will need to be well related to the existing street scene in terms of issues such as alignment, active frontages, well designed and expressed entrances.
- The height of the base also needs to be well related to the existing street scene.
- The building needs to be appropriately orientated and designed in order to maximise energy efficiency, for example with glazing designed to facilitate passive solar gain etc.
- The use of balconies is encouraged, but they need to be effectively integrated with the overall design for the building, and should not undermine the expression or the form of the building, or
increase its massing. Wrap around balconies in particular should be used with caution.

- The top of the tower will be particularly important, generally this needs to have a more slender, subservient or lighter massing in relation to the rest of the building below in order to ensure an elegant meeting with the sky.
- Any mechanical or telecommunications equipment required to be placed at the top of the building needs to be attractively integrated with the top of the tower in order to form part of the architecture.
- It is vital to consider how the building will appear in key views (including how it will appear in context), and how it will impact upon those views.
- Incorporate/facilitate ‘active’ uses at the base of the building, such as cafés, restaurants, retail or leisure uses.

Key design principles – tall buildings

TB1 – Ensuring the tall buildings respond positively to the character of the town.

TB2 – Rigorously assess their impact from key viewpoints.

TB3 – Ensure tall buildings are arrange harmoniously, and produce coherent clusters.

TB4 – Ensure tall buildings are well-designed, with attractive proportions, and bases which are well related to the public realm.

Housing

Traditional approach to housing design

8.71 This style of housing essentially seeks to draw on the traditions of English domestic architecture, often from the time of the Victorian period up until the early-mid twentieth century, though sometimes also with references to the vernacular or Georgian periods. However, such designs often fail to adequately reflect the design characteristics of the buildings they seek to reference.

8.72 The following principles need to be adhered to ensure that this design approach is successful:

- The design needs be well execute and be an effective representation of the traditional design principles underpinning the approach taken.
- Traditional architectural features need to be incorporated in order to enliven the composition, such as
chimneys, half dormers, projecting or recessed porches.

- Ensure the massing is elegant, in particular this requires that deep floorplans are avoided. Rather than deep floorplans, larger houses should utilise features such as rear out-shots and combining different forms in order to reduce the bulk of the building.

- The buildings need to have attractive proportions, for example individual elements must not be over-scaled in relation to overall composition, for example, this means that features such as oversized dormers must be avoided.

- Utilise high quality materials and detailing, which have an attractive traditional character. For example, stock bricks and clay tiles, recessed windows and segmental window arches.

This example of good quality traditional housing in Micheldever Station has a strong rural character, reflecting the local context, and utilises traditional, rural forms and materials.

In this example from Winchester the housing has a strong traditional character, with good quality materials and detailing throughout.
Contemporary approach to housing design

8.73 The conceptual essence of contemporary approaches to design draws on the modernist tradition, which involves:

- an absence of ornament
- using the form of the building and the appearance of the materials to create visual interest
- crisp, precise detailing.

8.74 However, while this aesthetic draws on the modernist tradition, the contemporary approach is generally now much more flexible, with a far more sympathetic attitude to the context and the needs of the occupants. There is generally also an attempt made to incorporate some more traditional features, though sometimes reinterpreted in a contemporary manner.

8.75 The most pronounced expression of this approach is likely to involve utilising both a
contemporary form and also language (i.e. through the fenestration and/or detailing). This can be based on modern or traditional materials. The latter approach is likely to be preferable from an urban design perspective, as it allows for contemporary forms to be integrated in a more contextually responsive manner, for example by utilising locally distinctive materials such as brick or timber.

Alternatively, it is possible to make use of a traditional form, for example a gabled form, but with a contemporary language. For example, by using modernist style elevational treatment and modern materials, or detailing, or traditional materials utilised in a contemporary manner.

This approach is generally quite conducive to good urban design, as it is easier for people to relate to, and allows contemporary architecture to be more easily integrated with the local architectural tradition.

In this example from Sutton Scotney, the design utilises a traditional crooked timber frame, and blends the traditional and contemporary in order to reinterpret the cottage typology.

This example from Basingstoke merges traditional and contemporary forms and materials in order to create an interesting design which is successfully integrated with the context.
8.78 A middle ground between these two approaches can be to utilise a traditional form, but reinterpreted in a contemporary manner. This allows reference to be made to locally distinctive architectural traditions, but in a manner which allows for an expressive and interesting approach to form, in a manner which is easier to integrate with the context.

8.79 For all of these options the form needs to be clearly expressed, and the quality of the materials and detailing will be key to the success of the design. It is also important to ensure that the composition is cohesive and coherent. For example, this approach is unlikely to work if a contemporary façade is simple applied to a standard house type, or if contemporary elements are combined with standard detailing.

Flats

8.80 Lessons drawn from experience of this building typology in the borough are set out below:

This example of apartments in Winchester utilises a contemporary approach but integrates traditional elements, such as a gabled roof form, in order to ensure it responds positively to the historic townscape.

This example in Winchester illustrates how flats can be reconciled with traditional architectural approaches, with the building having the appearance of a large arts and crafts house in a verdant setting.
By their very nature blocks of flats tend to be large buildings, therefore, particular attention needs to be paid to their scale, bulk and massing. Unfortunately flats in housing estates tend to be overly bulky and fail to integrate successfully with the rest of the development.

Designs based on inflated, simplistic domestic forms are not considered to be satisfactory, as they tend to be poorly proportioned, overly bulky and lack visual interest. They also tend to suffer from an unsuccessful relationship with surrounding traditional style housing which they seek to reference, as the juxtaposition between the two tends to accentuate the weaknesses in the design.

It is important to ensure these buildings have visual energy, which can be achieved though interesting form, articulation, modulation, materials and detailing. For example, consider creating interesting visual effects by utilising an interesting combination of forms and/or by using projecting and recessed features such as balconies.

Office buildings

8.81 A high quality appearance is vital in order to create a positive impression of the businesses occupying the building, and in order to create a conducive working environment for the
employees. Principles likely to ensure successful designs are considered to include:

- the building needs to have visual energy, which can be generated by adopting interesting approaches to form, articulation, modulation, materials and detailing
- first impressions are very important, so provide an impressive entrance area, both internally and externally
- the space created needs to be flexible and high quality (for example in terms of allowing the different floors to be subdivided if necessary)
- maximise the penetration of natural light within the internal spaces
- wherever possible, allow views out towards natural features
- achieve energy efficiency through plan form, depth and design of the façade

- consider incorporating complementary uses such as cafés or gymnasiums.

Industrial/logistics buildings

8.82 Industrial/logistics buildings must respond to modern day requirements and can produce attractive, contemporary architecture. However, too many industrial buildings appear to have little architectural input and are rather the result of standardised construction.

8.83 These buildings inevitably tend to result in expansive, regular shaped floorplans, and this is generally unavoidable from a functionality perspective. The goal from a design perspective is then to reduce the bulk and massing of the buildings through techniques such as articulation and modulation of the facades and roof form. In other words, the goal is to try and prevent the building simply looking like a large box by seeking to give the appearance of the building being a combination of more elegant shapes.

8.84 The texture and combination of the materials can also be used in order to articulate the façade and create visual interest. A good example is the Jaguar Land Rover Factory in the west midlands.

Educational buildings

8.85 A recent study by the RIBA highlights the importance of improving the design standards of schools. This sets out the enormous benefits of high quality school buildings for educational attainment and the wellbeing of teachers. Good school design provides a comfortable, responsive environment which effectively and efficiently supports

11 https://www.architecture.com/knowledge-and-resources/resources-landing-page/better-spaces-for-learning
educational activities, whilst minimising operational burdens and risks.

8.86 The RIBA report sets out the following requirements for good school design:

- Good quality natural light, supported by good artificial lighting.
- Pupil sense of ownership. School design that creates dedicated social or self-directed learning spaces, incorporate child centred furniture, and allows for the display of work or imagery pupils can identify with on the walls. End users from the school should help develop these elements rather than imposing something upon the school to represent their identity.
- Simple, natural ventilation systems. Flexible natural ventilation with variable levels of ventilation, and higher ceilings to absorb stale air. Or where that is not possible or appropriate, mechanical ventilation, which is simple to operate and quickly responsive to allow air quality to be easily maintained.
- Thermal comfort and control over temperature. Thermal controls should be easy to use and quick to adapt to changing uses of space.
- Optimum amount of colour in learning spaces. To create interest but not become a distraction.
- An optimum level of visual interest in terms of design.
- Appropriate provision for the display of work and storage solutions which are developed with the school are integral to good design.
- Flexible spaces. That can be zoned for various activity areas to help facilitate learning.
- Good acoustics. For effective learning, pupil engagement, and wellbeing.
- Simple design that reduces reliance on complex mechanical systems.

8.87 Circulation routes within and around buildings need to be effective and efficient in terms of allowing pupils to move around buildings quickly and easily. It is also important to consider the provision of appropriate break out spaces, both internally and externally. The location of external circulation and congregation spaces needs to be carefully considered in light of their relationships with any sensitive neighbouring uses such as residential properties.

8.88 The external finishing materials and detailing needs to contribute to ensuring that the design of the building is filled with natural light, is sustainable and achieves a high degree of visual interest. The materials and detailing also need to be robust.

Sub-division of dwellings and houses of multiple occupation

8.89 In order to ensure that full consideration is given to the possible impacts of subdividing a dwelling into separate dwellings or an HMO, the following sets out the minimum requirements necessary for the sub-division of a dwelling to be considered appropriate.

1. Ensure that any external alterations to the appearance of the property in order facilitate the intensification in the use of the building are sympathetic to the design and character of the property, and are not detrimental to the character of the area.
2. The main access needs to be by way of a separate lockable entrance to the front or side aspect of the property.
3. Access must be direct to the street or through a common entrance lobby serving two or more dwellings, the latter being preferable to avoid the creation of two front doors which can adversely alter the appearance of the dwelling.
4. Self-contained facilities for each dwelling: including exclusive use and access from within the dwelling to the kitchen, bathroom or shower-room and lavatory.
5. Windows and natural light: all areas or rooms providing living, eating or sleeping space or acting as kitchens must have one outside wall and window to afford natural lighting and ventilation.
6. Location of rooms: needs to be arranged to avoid locating living rooms, bathrooms and kitchens next to, above or below proposed and/or neighbouring bedrooms. Instead, rooms of a similar kind should be located in order to avoid noise disturbance. Appropriate sound insulation will be required. In addition, it will be necessary to avoid locating new bathrooms and WCs at the front of properties, given the potential
harm that this can result in to the visual appearance of a dwelling.

7. Refuse store: refuse and recycling storage provision must be made for a communal bin storage area. This must be provided in a well-designed storage area, which minimises the visual impact and forms an integral part of the development; be accessible; have regard to the impact of noise and smell; must not be in overly prominent position; must not have a detrimental impact on the character of the area, particularly in relation to Conservation Areas.

8. Ensure that residents enjoy a satisfactory standard of amenity, including through the provision of gardens and outdoor spaces.

9. Parking and cycle storage: provision will need to be made, which accords with the council’s Adopted Residential Parking Standards Supplementary Planning Document.

10. Ensure there is not a proliferation of HMOs in any particular locality, where this results in a detrimental impact on the character of the area, particularly in relation to Conservation Areas.

Shopfronts

8.90 This section applies to shopfront design generally. However, there will be additional important considerations which apply to Conservation Areas and Listed Buildings, and which will be covered in the SPD covering the Historic Environment which will sit alongside this document.

8.91 Good shopfront design, appropriate to the location is good for business. A well-designed shopfront can be considered as an advert in its own right.

8.92 New shopfronts must respect their surroundings, and relate to both the design of adjacent properties and the upper floors of the building which accommodates the shop. A shopfront needs to be seen as part of a building rather than a separate entity, and it is important for a fascia to be well-related to the building in which it is set.

8.93 If a shop occupies the ground floor of two or more buildings, a continuous fascia running across the facades of all the buildings, disregarding architectural detailing and decoration, is not considered to be acceptable.

8.94 The principles of design on which traditional shopfronts are based may also be applied to modern shopfront design, whilst avoiding pastiche copies. Modern interpretations of traditional features can be successful. Reproduction shopfronts applied to facades of modern buildings in new areas should be avoided - good modern shopfront design is preferable.
While it is recognised that a corporate style is important to certain traders, this must still be successfully related to the context, and hence may require some modification.

Specific design principles which must inform the design of shopfronts include the following:

- The fascia must be designed as an integral part of the shop and building.
- The fascia should not be too deep and must not extend above the first floor window cill.
- Cluttered, oversized, or brightly-lit signs can detract from the shopfront, building and street and are not considered acceptable.
- Lettering on the fascia should be painted, engraved, fixed or projecting in a style and colour, appropriate to the shopfront and building.
- Projecting signs must be designed and positioned so as not to damage or conceal architectural features, must be placed below fascia level and must be at least 2.1m above pavement level.
- Internally illuminated projecting signs are unsuitable for older shopfronts, especially within conservation areas.
- If illumination is required, external spotlights, or concealed trough lighting are an acceptable alternative.
- Projecting signs on modern shopfronts need to be positioned within the fascia panel.
- Vertical features should be incorporated in order to subdivide large windows, in order to avoid excessive horizontality.
- The design of doors needs to be in keeping with the other elements of the shopfront.
- Blinds and canopies can add interest and diversity to the street scene, but it is important they are sensitively designed and appropriate to the locality. Blinds and canopies should be of a high quality, with a non-reflective finish, and canopies should be retractable.
- At the lowest point, blinds and canopies must be at least 2.1m above pavement level.
- Canopies must not extend across more than one shop frontage.
- Non-traditional or reflective finishes and fixed plastic canopies are not considered to be acceptable.
- Materials for shopfronts must be of a high quality and durable, while colours need to be appropriate to the setting; historically, the traditional materials for shopfronts have been brick, timber and glazing.
- Contemporary designs and materials need to be high quality, durable, and well related to the context; the detailing also needs to be clean, crisp and precise.
- The choice of colour scheme is important, as it can affect the overall street scene. Generally, subdued dark colours are more traditional and help to emphasise lettering and window displays.
8.97 All items of security, including burglar alarms and additional lighting, must be an integral part of the design of a shopfront.

8.98 If security grilles or shutters are deemed essential, they must be carefully designed and their impact on the overall appearance of the building and the character of the area must be minimised.

8.99 Where shutter boxes are provided they need to be installed behind the fascia board or incorporated onto the shopfront design. Removable grills are a secure alternative to roller shutters/grilles which do not require shutter boxes and therefore do not affect the appearance of the shopfront.

8.100 Decorative security grilles, which can be seen through are preferable, and may be situated either in front or behind the shop window. They allow passers-by to view the shopfront and the display, while premises remain secure. Solid shutters must be avoided, unless a robust justification can be provided and is considered acceptable by the Local Planning Authority, as they are detrimental to the relationship with the street scene and present an inhospitable frontage, particularly where untreated metal is used.

8.101 New shopfronts must allow convenient access for all, with provisions for disabled persons and special user groups. Wheelchair users, parents with prams, and persons with visual disabilities have difficulties negotiating steps and opening doors. Entrance doors must have a minimum opening width of 1500mm, with door handles/hand rails positioned no higher than 1m above floor level.

Example of high quality shopfronts in Winchester.
Section 9 - Materials and detailing

9.1 The external finishing materials and detailing are very important from an urban design perspective. These must be high quality, reinforce the overall design concept, and take account of the context of the site.

9.2 Materials are also very important from a sustainability perspective. The materials chosen need to have regard to their sustainability credentials. It is necessary to consider issues such as the processes involved in the production of man-made materials, and the sustainability credentials of naturally sourced materials in terms of their location of origin, transportation and durability.

9.3 It is strongly recommended that the materials and detailing are specified in as much detail as possible in the planning application. This will hopefully mean that the number of conditions can be reduced, and make it easier for the quality of the detailing to be maintained during the construction process.

Key design principles – materials and detailing

MD1 – Materials and detailing need to be good quality, durable, and consistent with, and also reinforce the overall design concept of the proposed development.

Elevations

Bricks

9.4 Bricks are generally the traditional external finishing material used in the borough and their use in new development is encouraged. The most locally distinctive types of bricks in the borough are generally orange/red, dark red, or a warm brown.

9.5 Bricks should ideally be ‘stock’ bricks, i.e. those with a slightly irregular shape and soft finish. These more closely reflect traditional brick making techniques and give a more textured appearance to the elevations. Sharper brick shapes can be appropriate on more contemporary designs, although soft stock bricks are suitable as well when utilising...
that approach. Generally, ‘multi’ bricks are the most successful as they give a gradation of colour which adds to the texture of the brickwork and improves the level of visual interest.

9.6 It is important to consider the mortar as well as the bricks, in terms of colour and technique, e.g. raked joints give greater definition to the shape of the bricks and a more restrained colour tone.

Buff bricks

9.7 When using a buff brick, it is necessary to ensure that the brick is not too yellow or bright in appearance. A sombre, more cream coloured tone is likely to be much more successful.

Dark Bricks

9.8 Dark bricks can be very effective in certain situations, in particular in relation to more contemporary designs. As an architectural device, they give the ground floor a very solid appearance. It is important to colour match the render when using dark bricks.
Key design principles – materials and detailing

MD2 – Where bricks are proposed, wherever possible, use good quality stock bricks.
MD3 – Avoid overly dark brown/red bricks or buff bricks which are overly yellow.

Tile hanging

9.9 Bricks can also be used in conjunction with tile hanging, or tile hanging alone can be utilised. This is a traditional form of elevational cladding in Hampshire, and can be very effective in terms of creating visual interest. Consequently, the use of clay tiles as an external finishing material is encouraged.

9.10 Tile hanging needs to give the walls texture, this is often best achieved by using tiles with a slightly rough surface, and which are cambered. It is important to consider the relationship with the roof tiles. For example, the tiles on the walls should accord with those used on the roof (in terms of character), but often it is most effective if the tiles on the external elevation are a slightly lighter colour tone than those on the roof.

9.11 Slate hanging is not common in the area, as slate is not a locally indigenous material. However, it is a traditional approach in English architecture more generally, so may prove an appropriate solution in some instances.

9.12 Both of these approaches can be utilised in relation to both traditional and contemporary designs.

Key design principles – materials and detailing

MD2 – Where bricks are proposed, wherever possible, use good quality stock bricks.
MD3 – Avoid overly dark brown/red bricks or buff bricks which are overly yellow.

Tile hanging

9.9 Bricks can also be used in conjunction with tile hanging, or tile hanging alone can be utilised. This is a traditional form of elevational cladding in Hampshire, and can be very effective in terms of creating visual interest. Consequently, the use of clay tiles as an external finishing material is encouraged.

9.10 Tile hanging needs to give the walls texture, this is often best achieved by using tiles with a slightly rough surface, and which are cambered. It is important to consider the relationship with the roof tiles. For example, the tiles on the walls should accord with those used on the roof (in terms of character), but often it is most effective if the tiles on the external elevation are a slightly lighter colour tone than those on the roof.

9.11 Slate hanging is not common in the area, as slate is not a locally indigenous material. However, it is a traditional approach in English architecture more generally, so may prove an appropriate solution in some instances.

9.12 Both of these approaches can be utilised in relation to both traditional and contemporary designs.
Render is a very versatile material, and can be used in a variety of ways in both traditional and modernist styles of architecture, and in both urban and rural areas.

9.13 Smooth render is very effective at expressing form in a pure way, and consequently is often associated with the modernist period. However, it can appear cold, stark and bright. Rough render gives a softer and more textured appearance, and is generally associated with rural environments and vernacular and arts and crafts architecture. It can also be rusticated in some instances (made to

Key design principles – materials and detailing

MD4 – Tile hanging can help in adding texture to the external elevations, but the tiles need to be high quality, and well related to the roof tiles.

Render

9.13 Render is a very versatile material, and can be used in a variety of ways in both traditional and modernist styles of architecture, and in both urban and rural areas.

9.14 Smooth render is very effective at expressing form in a pure way, and consequently is often associated with the modernist period. However, it can appear cold, stark and bright. Rough render gives a softer and more textured appearance, and is generally associated with rural environments and vernacular and arts and crafts architecture. It can also be rusticated in some instances (made to
imitate stone), an approach which is associated with Georgian/Neoclassical architecture

9.15 In urban design terms render needs to be used carefully, as light coloured render can appear very prominent, and is likely to weather poorly, especially in verdant sites or next to busy roads. It can also become strained through poor integration of fixtures and fittings, or if used inappropriately in relation to other materials, e.g. it can become stained when used with timber.

9.16 Accordingly, the use of render is discouraged and it must only be used where it can be demonstrated that it will be adequately maintained and will not become severely discoloured.

9.17 Applications involving the use of render must demonstrate how it can be ensured that its appearance will not deteriorate/discolour. Ensuring
that the appearance of render is suitably maintained will be dependent on various factors. Examples include the use of self-cleaning finishes/types of render such as silicone and using through-coloured render. The applicant must also demonstrate that suitable procedures are in place to ensure the ongoing maintenance and cleaning of the render, and this will need to be secured through the planning process.

Key design principles – materials and detailing

MD5 – While render can produce attractive buildings, the use of this material is discouraged, as it can discolour significantly. When render is proposed it is necessary to demonstrate that its discolouration can be prevented.

Timber

9.18 The use of timber as both an external cladding, and a structural system, is traditional in the borough, and has regained popularity more recently, for both aesthetic and sustainability reasons.

9.19 As an external cladding system timber cladding can be left to weather naturally, or stained/coated via various methods.

9.20 There is a notable distinction between soft and hardwoods, with hardwoods being the more durable, and hence preferable from an aesthetic and sustainability perspective.

9.21 The durability and weathering will depend to a large extent on regulating the moisture content, so timber clad elevations generally need direct sunlight so that they dry effectively.

9.22 Sustainability is very important in relation to timber cladding, and in addition to the durability aspects, it is also vital that it comes from a sustainable source.

9.23 Timber also needs to be considered in relation to Building Regulations requirements, as it can be a fire hazard if used in close proximity to boundaries, in which case it will need to be treated in order to make it fire retardant.

9.24 Staining/coating timber removes the potential for the material to weather gracefully over time. However, there are certain benefits, in particular, it allows for a much more consistent appearance, especially in relation to weathering, and improved durability.

9.25 It is important to have regard to how the staining fits with the overall design concept and the context. For example, staining timber black can look particularly appropriate in a rural context, as this is a traditional finish in Hampshire.

9.26 Problems with the weathering of timber cladding is already
These houses in St Mary Bourne employ black stained horizontal timber cladding in order to give the buildings a strong rural character. Therefore, where timber cladding is proposed it will be important to demonstrate that it will be maintained in a suitable manner, will be durable and will weather in an attractive manner.

This building in Rooksdon in Basingstoke utilises vertical timber cladding in a contemporary manner, which combines visual interest and texture with a crisp modern appearance.

Key design principles – materials and detailing

MD6 – Timber cladding needs to be sustainably sourced, durable and consistent with the overall design concept.

MD7 – It is vital to ensure that the timber cladding is used in a manner which allows it to weather/age attractively and can be suitably maintained.

Contemporary materials

9.27 Modern materials can be very effective when used as part of contemporary design solutions, utilising either traditional or contemporary building forms.
9.28 The materials chosen still need to be high quality, and carefully related to the context. It is also important to have regard to the weathering qualities, both in terms of the aesthetic aspects, as well as the durability of the material.

9.29 Examples of contemporary materials are fibre cement cladding and various types of metals such as Copper, Zinc or Aluminium. These materials allow for crisp detailing and effective expression of form. Fibre cement and metal cladding can be used to create interesting textures, patterns and articulation, and can be a means of employing various colours.

Contemporary detailing

9.30 Contemporary designs are often predicated on clean, crisp lines and regularly seek to express forms in a pure way. This design approach also often seeks to integrate modern materials and detailing as an integral part of the design. As a
result, contemporary detailing needs to be crisp, precise and elegant.

Key design principles – materials and detailing

MD8 – The use of modern materials needs to be well related to the overall design concept, and should be sympathetic to the context.

MD9 – Contemporary detailing needs to be crisp, precise and elegant.

Window materials and detailing

9.31 The choice of windows, and associated detailing needs to be consistent with the architectural language of the building. For example, in traditional designs timber windows are ideal and it is important to ensure that the windows look as traditional as possible, i.e. they should not have an excessive number of glazing bars, and it is better that

In this example from New Alresford every aspect of the window design is good quality. The windows are well proportioned sashes, which are combined with attractive arch, cill and recess detailing.

In this example in Winchester the contemporary window materials and detailing, with the grey window frames, recesses and coloured panels, are vital in terms of giving the design its dynamic contemporary character.
the glazing bars are external as opposed to being inserted within the glass, as this will engender a more traditional appearance.

9.32 Proportions are also important in relation to traditional windows. This relates to both the windows themselves, the ratio of wall to window and in terms of the detailing (e.g. proportion of frame to glass).

9.33 On contemporary designs windows are often large, prominent and used to add visual interest to the form and articulation of the building. Therefore, it is vital that the detailing is clean, crisp and precise. It is also common to incorporate windows as part of projecting or recessed elements, and sometimes with coloured panels. Contemporary architecture is often associated with grey or black window frames, with aluminium being a common material.

Key design principles – materials and detailing

MD10 – window design/appearance, materials and detailing need to be high quality and well related to the overall design concept.

Roof materials and detailing

Plain tiles

9.34 As with bricks, plain tiles need to be appropriate in terms of colour tone, texture and shape.
Generally, orange/red or a warm brown is the most effective colour and best reflect the traditional local vernacular.

9.35 The roof tiles should ordinarily be slightly darker than any brick or tile cladding used for the elevations below. Though they shouldn’t be too dark initially, as the weathering process will mean they generally darken naturally.

9.36 The tiles should ideally be double cambered, with a slightly rough surface, in order to give the roof texture.

Slate

9.37 Slate has been common in the area since the Victorian period. Natural slate needs to be carefully sourced, as it varies enormously in terms of appearance, quality, durability and price depending on its origin.

9.38 Man-made slates are available. However, these often lack the subtle variation of colour tone which is characteristic of natural slate. It is also important to

Key design principles – materials and detailing

MD11 – Plain roof tiles must be good quality and textured (in relation to both the shape of the tile and its surface), and should be darker than the bricks on the elevations.

MD12 – Slates need to be good quality and durable, and natural slate should be used wherever possible.

MD13 – Where artificial slates are used these must be as similar in appearance to slate as is possible. Grey interlocking concrete tiles are not a suitable substitute for slate.

In this example in Winchester the slate roof blends well with the buff brick and helps in achieving the balance between the traditional and contemporary aspects of the design.
establish that their appearance will not degrade significantly over time.

9.39 Grey concrete tiles are not likely to constitute a successful alternative to slate as they have a very different appearance, profile and texture.

Roof detailing

9.40 When utilising traditional designs the use of commensurate detailing for the roof will enhance the overall quality of the design. In particular this is through the use of features such as open eaves, with exposed rafter feet, and dark coloured eaves.

9.41 Traditional roof detailing often also includes decorative features such as ornate barge boards, finials and ornamental ridge tiles. However, it is important to use such features carefully, in order to prevent the building appearing overly ornate.

External spaces

Boundary treatment

9.42 Boundary treatment is an important characteristic of the built environment, and plays a significant role in delineating space (i.e. whether it is public or private), local distinctiveness and establishing the quality of the spaces in and around new development.

9.43 It is essential to ensure that new boundary treatment, especially that which forms part of the street scene, is high quality, contextual, durable and relates positively to the overall design for the site/development, so that it forms an attractive part of the overall composition of buildings and external space.

9.44 Planting is a very sympathetic form of boundary treatment. However, this needs to be sufficiently dense and robust, and provided at a suitable size to fulfil its function from the outset.
In terms of approaches which are likely to be successful. In urban contexts brick walls and metal railings (usually black) are traditional approaches which are often successful.

In rural and suburban contexts hedging, particularly using native species are often a very effective approach. Low picket fences are another approach which is characteristic of such areas.

More specific guidance on locally distinctive approaches to boundary treatment are set out in documents such as the Countryside Design Summary and the borough various Village Design Statements.

In relation to contemporary schemes, walls, railings and fences are often likely to be successful solutions, but they need to be well related to the overall design concept for the scheme. For example, walls must reflect the external elevations of the buildings, and where fencing is used it needs to have a contemporary character, such as slatted or hit and miss fencing.

Key design principles – materials and detailing

MD14 – New boundary treatment, especially where it forms part of the street scene, should be good quality, contextual, durable and respond positively to the overall design for the site/development.

MD15 – Wherever possible, incorporate, prominent planting as part of the boundary.
Hard surfaces

9.49 The hard surfacing needs to be high quality and considered holistically in relation to the context. The appearance of the hard surfaces will have a significant impact on the character of the whole development. Accordingly, the hard surface design and materials needs to be high quality and well related to the overall design concept.

9.50 The use of different hard surfacing materials to distinguish the different functions or parts of the hard surfaced areas is often beneficial in urban design terms in relation to adding visual interest and defining different areas, for example, parking spaces might be in a different finish to the access road itself.

9.51 The selection of appropriate materials will depend on the context. Paviors are often attractive material for hard surfaces. Generally these need to be soft in appearance, with a rough texture and irregular edges. Paviors which are overly smooth, sharp and shiny in their appearance should be avoided.

9.52 In some contexts materials such as resin bonded gravel and some macadams may be the most appropriate.

9.53 Wherever possible, the hard surfaces should be permeable in order to ensure effective drainage of surface water.

9.54 The hard surfaces also need to be durable and easy to maintain (for example ensure that weeds do not grow through the gaps between paving stones).

Examples of good quality hard surface materials in Basingstoke and Tadley, and how they help create attractive streets and spaces.
Preventing deterioration of the materials and detailing specifications through the planning process

9.55 It is vital to ensure that the quality of the materials and detailing is not undermined through the different stages of the planning process. For example, often an initial proposal will specify good quality materials and detailing, however, this will then be undermined through subsequent applications, for example where the site is sold-off and then a new owner puts in a revised application seeking to increase the density of the proposal and diminish the quality of the material and detailing specification. This process is often then repeated again during the details and compliance process, where the contractor will again seek to achieve cost savings by further reducing the specifications of the materials and detailing. This is considered to be an extremely damaging process in relation to the process of securing good quality design and will be strongly resisted.

Example of good quality materials and detailing in Basingstoke.

Key design principles – materials and detailing

MD16 – Hard surfaces must be good quality, durable and respond positively to character of the proposed development.

MD17 – Different surface treatments should be used to convey the different functions of the external spaces.

MD18 – The council will not accept the substitution of good quality materials and detailing for inferior versions.
Section 10 - Residential Amenity

External spaces

10.1 This part of the guidance applies to gardens and amenity spaces which are located towards the private aspect of a dwelling i.e. to the rear of the dwelling, but occasionally include side gardens. Front gardens will not contribute towards minimum amenity space provision. Any contribution by roof gardens can only be considered if they are a genuine and safe alternative to other forms of on-site provision.

10.2 The areas occupied by garages and car parking are excluded from these amenity space requirements. As are areas for bin and cycle storage, conservatories and outbuildings.

10.3 The rear or side gardens of dwellings must allow for the storage of wheeled bins which can be taken to the collection area via paths and gates to the side or rear. It must not be necessary for wheeled bins to be taken through a dwelling to the collection area. Developments must not provide for wheeled bins to be stored at the front of the property unless a design solution is proposed which significantly limits the impact of the storage of bins on the streetscene.

10.4 This guidance also applies to conversions to residential accommodation. Amenity space needs to be provided for conversions consistent with the size and location of the dwelling. The assessment of this issue will need to have regard to particular character of the building and the local area.

10.5 This guidance does not apply to specialist housing such as sheltered units. The amenity space requirements of these other types of accommodation will be considered individually.

10.6 This guidance also applies to assessing what size needs to remain of an existing garden when new development seeks to encroach on existing garden land.

10.7 Amenity requirements are set out in the key design principles RA1, RA2 and RA3. Variations to these requirements may be permitted where this can be justified through the planning application. In such cases the following considerations will apply:

a) The guidance given on the size of back gardens for houses are minimum areas. However, the size of a garden will also be dependent on the character of a development and its surrounding area. For example, in lower density areas dominated by landscaping and substantial gaps between houses, then gardens larger than the above minimum sizes may be required. Where higher density development is
permitted, then less amenity space may be justifiable.

b) The size of amenity space should be appropriate to the character of the dwelling. For example, larger dwellings, such as 3, 4 or 5 bedroom detached houses, will usually require gardens considerably in excess of the above minimum sizes.

c) Developments may offer a range of garden sizes to accommodate the differing demands of householders. For example, it may be appropriate to include a limited number of smaller gardens for those dwellings which are likely to accommodate small households.

d) Gardens and amenity space must be of a shape, size and level (i.e. it should not be stepped) which is practical and usable.

e) The requirements for gardens and amenity space cannot include substantial areas of existing trees, hedges and other vegetation.

f) Wherever practicable, gardens or amenity space for flats should receive reasonable levels of direct sunlight. Where this is not practical consideration will be given to requiring additional garden or amenity space to compensate for a reduced level of sunlight.

g) Private amenity space needs to be provided within the curtilage of the development. The use of public areas to contribute to private amenity space will only be allowed for houses as an exception where it is demonstrated that it is within easy reach for the residents and that it can provide space for informal relaxation.

h) Side gardens may contribute to the minimum provision of amenity space, but only where it is demonstrated that their size and shape genuinely contribute to meeting needs of the occupants.

i) A back garden depth of less than 10m may be acceptable, but only where it is demonstrated that this is appropriate to the character of the house and wider area, and does not result in harm to other aspects of amenity such as loss of privacy.

Key design principles – residential amenity

RA1 - Provision of Residential Amenity Space: New housing development is required to provide amenity space to meet the recreational and domestic needs of the occupants. Depending on the type of dwelling proposed, amenity space is required to provide for passive recreational activity such as sitting out, for active recreational activity such as play space for children and gardening, and for other outdoor requirements such as drying clothes.

RA2 - Private Gardens for Houses: The following minimum garden sizes will be required:

Number of bedrooms: Minimum Garden Size:

1 and 2 bedrooms: 50 square metres
3+ bedrooms: 60 square metres

RA3 - Each dwelling must have a minimum garden depth of 10 metres
Provision of amenity space for flats

10.8 The provision of amenity space for flats must have due regard to the following detailed issues:

Balconies

a) Balconies need to be provided unless it can be demonstrated this is not achievable.
b) Balconies need to provide enough space for two people to sit out comfortably.
c) They should preferably receive some direct sunlight and preferably look out onto a pleasant view, ideally towards natural features.
d) Balconies must not give rise to unacceptable levels of overlooking towards neighbouring properties.
e) The need for balconies may be waived where their appearance may be out of character with the streetscene.
f) ‘Juliet’ balconies will not contribute to the provision for balconies as set out in this guidance.

Amenity space

g) There are no quantitative requirements for the size of communal amenity space for flats or for private, outdoor space for ground floor flats. Each case will be considered on its merits.
h) The space must provide enough room for the residents of the flats to sit out comfortably.
i) In the case of private, outdoor space for ground floor flats which can provide family accommodation, there must be enough space for children’s play.
j) The amenity space should provide a degree of privacy and receive some direct sunlight where practicable. These areas should be separate from other areas which serve the flat such as car parking.

10.9 Private amenity space should be provided within the curtilage of the development. Waiving the need to provide balconies or amenity space within the curtilage of the flats may exceptionally be acceptable if there is alternative provision in the form of nearby public open space. The use of public open space in lieu of on-site provision will require the applicant to demonstrate that the open space is sufficiently accessible and of a type to provide a genuinely usable alternative to provision within the curtilage of the building. This will require consideration of the characteristics of residents likely to occupy the housing (such as whether there are likely to be children as well as adults) and how safe and far away is the route to the public open space.
Key design principles – residential amenity

RA4 - New flatted development should provide amenity space for all occupants within the curtilage of the building. This may be in the form of outdoor private space for ground floor accommodation, balconies for accommodation above ground floor level, or communal amenity space. Alternative provision such as where there is good access to public open space, or in the form of roof gardens, may be considered on its merits.

Privacy

10.10 The best way of ensuring privacy for new and existing housing is to ensure that windows do not look directly onto private areas. These private areas include habitable rooms (living rooms, dining rooms, bedrooms), kitchens and patio areas in gardens immediately adjoining the building.

10.11 The minimum back to back requirements are 20m for 2 storey development and 28m for 3 storey development (which would also include accommodation within the
roofspace12). Greater distances may be required for taller development. Variations to the requirements for back to back distances may be acceptable if it is demonstrated that any of the following considerations apply:

a) Where there is a change in level between buildings, then the back to back distances may have to be increased.

b) Where the backs of houses face each other at an angle (typically 30 degrees or more) it is less likely that people will be able to see directly into each other's homes and the minimum back to back distances described above may be reduced.

c) The requirement for minimum back to back distances may be relaxed where the impacts on privacy can be reduced. This may occasionally be achieved, for example, through the use of: obscure glazing and restricted openings; the siting of habitable rooms within an internal floor layout; directional windows; the positioning of ancillary outbuildings; or existing mature trees and landscaping. It will not be acceptable for a habitable room to only have windows which are obscure glazed. Back to back distances may have regard to the character of an area. For example, shorter distances than those stated above may be acceptable in inner urban areas typified by higher densities. Similarly, greater distances may be required in some suburban and rural areas where the predominant character of the area exhibits greater separation distances.

d) Back to back distances may have regard to the character of an area. For example, shorter distances than those stated above may be acceptable in inner urban areas typified by higher densities. Similarly, greater distances may be required in some suburban and rural areas where the predominant character of the area exhibits greater separation distances.

10.12 Side by side relationships between dwellings will need to ensure that there is no direct overlooking or overbearing relationships, for example where the rear elevation (at 2 storey height) of one dwelling protrudes beyond the other and/or there are windows at first floor level looking directly towards the neighbour’s property.

12 However, where the window at second floor level (e.g. dormer window) is set back from the rear elevation, then the distance of the set back can be substituted from the overlooking distance requirement, i.e. if the second floor dormer window is set back by a 1m then the required overlooking distance would be reduced to 27m.
There are no minimum standards for distances between the fronts of dwellings across a street. Each case will be examined on its merits. However, care should be taken to avoid overlooking from the street into habitable rooms at the front of a dwelling. This can be achieved, for example, by setting back the front of a dwelling from the back of the pavement, or by siting front windows or even the whole building slightly higher. There may be some circumstances, for example where there is a strong historic context of buildings directly abutting the pavement, when it may be necessary to allow front windows to adjoin the street.

Natural Light and Outlook

10.14 Dwellings must have sufficient daylight to allow the comfortable use of habitable rooms (living rooms, dining rooms, bedrooms), kitchens and patio areas in gardens immediately adjoining the building. 'Daylight' is defined here as the amount of ambient light received from all directions.

Key design principles – residential amenity

RA5 - New housing development must ensure that the privacy of both new and neighbouring dwellings is protected.

RA6 - Minimum back to back distances will be required as follows subject to the flexibility set out in paragraph 10.11:

2 storeys – 20 metres
3 storeys – 28 metres

For buildings of 4 storeys or more, a greater back to back distance may be required depending on the merits of the case.

Illustration showing the 25 degree rule of thumb in relation to unrestricted daylight.
10.15 All dwellings should receive some direct sunlight in at least one habitable room in all months of the year.

10.16 There are no quantitative standards to be applied in every case in order to assess the amount of daylight and sunlight and the impact on outlook. Nevertheless, there are several ‘rules of thumb’ which will inform the judgement to be made. One is the ‘25 degree rule’. This states that there is normally the potential to achieve adequate levels of daylight and outlook when no facing building breaks a 25 degree angle from the horizontal from a point 2 metres above the floor level (the normal height of windows). This will take into account changes in ground level.

10.17 Another way of assessing the impact of neighbouring buildings on daylight and outlook is the ‘45 degree rule’. This states that there is normally the potential to achieve adequate levels of daylight and outlook when no part of a building cuts through a line radiating at 45 degrees from the centre of a window that lights a habitable room. Applying this rule will take account of the height of a proposed development as 2-storey developments, for example, have the potential for a greater impact. Any assessment of daylight and outlook will also take account of the impact of existing buildings and boundary treatments.

10.18 There are a number of ways in which the necessary levels of daylight can be achieved:

- careful orientation of housing with many of the habitable rooms facing south
- window head heights could be raised
- larger windows could be used
- rooms could be shallower; dual aspect rooms could be provided
- alternative sources of natural light other than windows could be considered such as light wells or skylights.

10.19 The canopies of trees can block out significant amounts of light to dwellings and their gardens. New housing should therefore avoid the prevention of daylight into habitable rooms, such as kitchens and lounges. Overhang from trees and shadowing of garden areas should also be kept to a minimum.
10.20 If there is a potential adverse impact upon the levels of light enjoyed by properties, then planning applications may need to be accompanied by a daylight/sunlight assessment.

Key design principles – residential amenity

RA7 - New development must provide a suitable, pleasant outlook and level of natural light for both new and neighbouring dwellings.

Internal spaces

10.21 Policy EM10 in the ALP requires the provision of a high standard of amenity for occupants of developments.

10.22 Therefore, it is considered vital to:
- achieve a good level of natural light within the property, particularly the main habitable rooms
- prevent/minimise disturbance from noise
- ensure a pleasant outlook from the main habitable rooms, ideally encompassing views towards natural features
- space to undertake normal living activities that do not just use furniture, e.g. washing, dressing, cooking, eating, playing
- space for clean storage, e.g. linens, vacuum cleaner etc.
- sufficient separation of rooms to allow required level of privacy, (this need can change over time, however designs that succeed when the rooms are separate, will succeed if the dwelling is converted to open plan. The converse will not necessarily be true)
- circulation space should allow for space near to the accesses to keep outdoor items such as coats, boots, prams, etc, preferably without having to pass through habitable rooms
- shared circulation space for flats should be designed for minimum maintenance and provide easy access to flats and associated facilities such as amenity space and bin stores and bicycle parking.

10.23 Another important aspect is ensuring that new accommodation is sufficiently spacious and fit for purpose. The council considers that it is very important that wherever possible applicants ensure new dwellings accord with, or where possible exceed, the Nationally Described Space Standards (please see appendix 3 for details).

10.24 It is also considered important to have regard to the practicalities of the space being provided. Therefore, new residential accommodation should provide:
- space for appropriate furniture and equipment
- space to access/use furniture/equipment/doors/windows
- circulation space

10.25 Of particular concern to the council are the new permitted
development rights, which have resulted in a large number of conversions of office buildings to residential uses. These have the potential to result in small units that are outside the control of the council.

10.26 Therefore, it is important that such schemes follow the guidance set out above regarding the qualities of the internal spaces. The floorplans below set out some good examples of how these conversions can be carried out in a manner which provides a reasonable standard of amenity space.

Example of conversion of office to residential, which relates well to the existing floorplate. This example accords with the national space standards.
Section 11 - Extensions

Residential buildings

11.1 Extensions must be designed having regard to the impact on neighbouring properties, the natural environment and also in relation to the whole street or particular group of surrounding buildings, and will need to have a successful relationship with the street scene. The following issues should be considered when designing extensions.

Site analysis

11.2 In the first instance it is necessary to consider the location of the potential extension in relation to any neighbouring properties, and in terms of views from the public realm, as these factors will have a significant impact on what size, scale and design of extension which may be acceptable.

11.3 In addition, it is necessary to consider any variance of ground levels, particularly in relation to neighbouring properties. Topography can have a significant impact on the visual prominence of an extension, and/or the impact on any neighbouring properties in terms of overbearing impacts or overshadowing.

11.4 Also, consider the effect of the extension on existing trees and hedges. Extensions should be designed and located so as to retain and protect (e.g. prevent damage to root structures) trees which have a positive impact on the character of the area.
Neighbour impacts

Boundaries

11.5 Wherever possible it will generally be necessary to keep the extension away from property boundaries, particularly in the case of two storey extensions, as otherwise it is likely the extension will have a detrimental impact on the neighbouring property.

11.6 However, single storey extensions on the boundary may be acceptable provided they do not create an overbearing impact.

11.7 Leaving space between the extension and the boundary will also allow for more convenient maintenance.

Overshadowing and overbearing impacts

11.8 It is necessary to avoid designing an extension that overshadows/block natural light in relation to the existing or neighbouring properties. For example, extensions to the south of the existing or

neighbouring property are likely to cause overshadowing and loss of direct sunlight to important habitable rooms.

11.9 Extensions must not have an overbearing impact on neighbouring properties, thus harming their outlook and/or making their property feel hemmed in by surrounding development.
11.10 The factors set out above will be heavily influenced by issues such as the relationships between relevant properties in terms of orientation, topography, internal layout of houses and location of gardens.

Privacy/overlooking

11.11 Avoid designing an extension with windows that directly overlook the neighbouring property, particularly close to the boundary. To the rear of a property it is normal practice to require a minimum distance of 20 metres between directly facing windows, where one is at first floor level.

11.12 However, in each case applications will be determined on their individual merits and a distance of less than 20 metres may sometimes be acceptable dependent on factors such as the relationship of dwellings to one another in respect of changing levels, orientation and the use of the rooms involved. Generally more protection will be afforded to primary living accommodation such as lounges, than to ancillary accommodation such as hallways and bathrooms.

11.13 Development involving single storey extensions will rarely cause overlooking, particularly on flat sites.

Key Design principle - extensions

E1 – Detrimental impacts on neighbours must be prevented, particularly:
- overbearing impacts
- direct overlooking
- blocking out natural light.
Design and impact on the character of the area

Building form

11.14 The design and style of the proposed extension should generally respect the design and style of the original house.

11.15 The basic shape of the extension should be subservient, and in proportion to the original building.

11.16 However, it is recognised that in some circumstances it may not be appropriate to design an extension which is truly subservient to the original building in every respect.

11.17 The bulk, massing, size and scale (width, depth and height) of an extension are critical in determining whether the development will remain in proportion to the building. Extensions which are overly large in terms of bulk, size and/or scale and are disproportionate in relation to the original house are unlikely to constitute acceptable design.
11.18 The shape, pitch and style of the roof will be a significant factor in achieving an appropriate design. The roof form does not necessarily have to exactly match the existing property, but should be well related to it.

11.19 Certain building features can be repeated on extensions in order to help integrate the new building with the existing, particularly in the case of historic buildings. Care should be taken when copying key design features, as poor quality copies are likely to detract from the original building and also undermine the design of the extension.

11.20 While the general principles above are vital in relation to the majority of extensions, there is the potential to design high quality extensions which contrast with, but are sensitively related to, the existing property in terms of features such as form, materials and detailing (of a contemporary character for example).

11.21 An extension must have particular regard to any regular arrangements of vertical features along a façade, for example chimneys, bay windows and half dormer windows.

Character of the surrounding area

11.22 Some areas may feature particular characteristics in terms of architectural style, materials and/or details. An inappropriately designed...
extension can undermine the appearance of the area through the introduction of alien features, such as poorly designed flat roofed structures or over-scaled dormer windows.

11.23 However, as has been referred to above, there is sometimes scope to incorporate extensions which utilise high quality designs which reinterpret existing architectural styles in a contemporary manner, and/or provides a subtle juxtaposition with existing architectural styles. This can add visual interest to the streetscene and represent the continuation of architectural styles.

Heritage impacts
11.24 It will also be important to establish whether there are any heritage implications associated with the proposed extension. Any extensions to listed buildings will require very detailed consideration, and there will be an array of specific design considerations which will apply in such scenarios. In addition, if extensions are proposed in conservation areas or in a location where they could impact upon the setting of a listed building(s) then it will be vital to consider in detail the impact this will have on the heritage assets. Further guidance regarding these issues will be set out in the council’s Heritage SPD.

Gaps between buildings
11.25 The spaces between buildings often make an important contribution to the character of
an area. Extensions which fill or encroach excessively on the space around a building may contribute towards an inappropriate “terracing effect” or can result in a cramped appearance, which is likely to be detrimental to the street scene.

Key Design principles - extensions

E2 – The design, form materials and detailing of extensions must respond positively to those features which define the character of the existing building.

E3 – The scale of the proposed extension should usually be subservient to, and be well-proportioned in relation to, the existing building.

E4 – Extensions need to respond positively to the streetscene and wider character of the area.

E5 – Extensions must consider the impact they have on the space around the building, in relation to issues such as plot coverage, views through and effect on the streetscene.

11.26 This is particularly noticeable where an extension continues the roof line of the original building and where a neighbouring property could also be extended in a similar manner.

Established pattern of development

11.27 If the street or group of buildings has a well-defined “building line” or pattern of development (which generally follows the road alignment), an extension or garage which departs from this convention may appear incongruous within the street scene. The presence of landscaping, fencing or other substantial boundary treatments that screens some or all of a structure does not justify otherwise inappropriate development.
Guidance in relation to specific types of extension

Rear extensions

11.28 Extensions to the rear of a property are the least likely to have a major impact on the house, the neighbours and the surrounding area. When extending a semi-detached or terraced property it is important to follow any established pattern of extensions. For example, in terraced houses the rear outshot is a very traditional form which, when paired with a similar extension on a neighbouring house can appear to be part of the original design. This type of extension can also help to increase privacy to the rear garden.

11.29 Poorly designed flat roofed extensions rarely appear to blend harmoniously with the existing dwelling and are likely to present long term maintenance problems. Pitched roofs are preferable and should be to the same pitch as the main roof. If it is not possible to achieve a pitched roof to the same angle as the main house then this is a good indication that the size of the extension is not in keeping with the scale of the dwelling.

11.30 Two storey extensions should nearly always have pitched roofs, the only exception being where it is part of a high quality contemporary extension which sits comfortably in the street scene.

Side extensions

11.31 Side extensions should be sympathetically designed and appear subservient to the main house. The appearance will often be improved if the extension is set back from the front elevation of the main building. The ridge height should also generally be lower than the existing house. However, in some instances, it may be appropriate, in terms of the design, to match the ridge height of the extension to that of
the existing property. The eaves height of two storey extensions should generally be consistent with the existing eaves height, though can be lower, but should not be higher.

Porches

11.32 Porches must not be over-scaled in relation to the existing dwelling and must not appear excessively prominent in the streetscene. They must be designed to respond positively to the character of the house. For example, the porch roof should reflect the roof design and pitch of the host building, and should have a similar architectural language.

11.33 Porches situated close to neighbouring properties should be designed to have minimal impact on the amenity of the adjacent dwelling.

Dormer windows

11.34 Dormer windows can represent very prominent visual features, which may dominate a building and will be inappropriate in areas which are characterised by dwellings with a simple and plain roof form.

11.35 If headroom allows, rooflights provide a less obtrusive alternative, and conservation rooflights are now available which minimise the effect on the profile of a roof.

11.36 However, if dormer windows are proposed, it is necessary to keep their size to a minimum and their position as low as possible on the slope of the roof.

11.37 The design of dormers should reflect the character of the main roof and the dormer windows should match the window style and rhythm of the fenestration.

11.38 As a general rule flat-roofed dormers should be avoided. However, a small unobtrusive flat roof dormer window can be appropriate in some situations.

11.39 Side dormer windows should also be avoided as they can visually unbalance the roof and undermine symmetry of a dwelling or a pair of semi-detached dwellings, as well as give rise to a loss of privacy to the adjoining neighbour.

Garages and other ancillary buildings

11.40 Garages and ancillary buildings must be located where overshadowing of, or disturbance to, neighbouring properties is minimised.
11.41 Garages and ancillary buildings must not project forwards of a strong building line. If such buildings are sited closer to the highway than the main building line, it is likely to be overly prominent visually, undermine the coherence of the streetscene and have an undesirable impact on the established pattern development and character of the area.

11.42 Where integral garages project forward of the main entrance to a house, care should be taken to ensure that they do not dominate the main elevation. Detached garages must be positioned in order to avoid any sense of the plot becoming excessively cluttered, particularly where they are located to the front of a property.

11.43 Garages and ancillary buildings should generally have roof forms which reflect that of the roof of the host dwelling.

11.44 The impact of double garages can be visually dominant and unsympathetic to both the host dwelling and the street scene, unless carefully designed. Their effect should be minimised by ensuring that the eaves are as low as possible and by the use of two single doors rather than one large double door, in order to prevent any excessive horizontal emphasis.

Residential Annexes

11.45 Consideration of residential annexes involves a range of interrelated issues in respect of design, scale, use and relationship with the main dwelling. The design of annex will need to accord with the guidance set out elsewhere in the SPD. However, there are also some particular considerations pertaining to annexes, which relate to ensuring that they have an appropriate relationship with the main dwelling and do not amount to the creation of a new dwelling. More specifically, a residential annex should:

- be subordinate to the main dwelling in terms of design and scale
- be linked internally to the main dwelling
- share a common access with the main dwelling
- be within the curtilage of the main dwelling
- have a functional connection with the main dwelling (e.g. the occupant should be a dependant relative of the residents of the main dwelling or employed at the main dwelling)
- be in the same ownership as the main dwelling
- be designed in such a way as to easily allow the annex to be used at a later date as an integral part of the main dwelling
- have no boundary demarcation or sub division of the garden areas between the curtilage of the main dwelling and the annex
- have adequate parking and amenity facilities for the needs
of the annex occupants and the residents of the main dwelling
- detached annexes (either new build or the conversion of an existing building) will not normally be acceptable.

Fenestration

Size and Proportion

11.46 Over-scaled windows on an extension, both in relation to the existing dwelling, and the size of the extension, are considered to be inappropriate. The scale and proportion of the windows should provide continuity between the original house and the extension.

Ratio of Wall to Openings

11.47 The ratio of solid (wall) to void (openings), otherwise known as the ‘solid to void ratio’, is important in order to reflect the character of the host building and to avoid unattractive large expanses of brickwork.

Vertical Rhythm

11.48 An extension must have special consideration to any regular arrangements of vertical features along a façade.

Materials and detailing

Materials

11.49 Generally materials should be carefully chosen to match the original building. It is important that not only the colours and tones of the materials match, but also the texture and size, such as the roof tiles and bricks.

11.50 When extending an older property it may be appropriate to use carefully selected second-hand materials, where the source of these can be verified as being legitimate and the materials are good quality.
It is often difficult to find materials which match exactly with the existing building, especially in relation to older houses. This is why setting back the front elevation is important, as it creates a visual break between the existing building and the extension which will disguise any slight variations in the materials and prevent awkward visual effects created by the blurring of slightly different materials.

In some limited circumstances, it may be appropriate to use different, or even contrasting materials where they may enhance the original building and/or contribute to achieving a high quality contrasting design which is sensitively related to the existing property.

It will also be important to ensure that detailing is well related to the existing building. For example, details which have a positive impact on the character of existing buildings should be replicated on
extensions, for example features such as segmental arches over windows; window recesses; brickwork bonding and patterns; important roof details (e.g. open eaves).

11.54 In contemporary extensions high quality detailing will be vital to the overall success of the design, this needs to be clean, crisp and precise.

Extensions and alteration of non-residential buildings

11.55 Many of the same considerations as those set out above in relation to relation to residential buildings also apply to the extension of non-residential buildings. More specifically, the following considerations apply:

- the extension needs to respond positively to the context
- wherever possible, extensions must enhance the appearance of the existing building and improve the character of the area
- have regard to form, character and materials of the existing building, and ensure the design responds positively to those characteristics
- extensions are often most successful when they are expressed as iterative (i.e. express the fact that this is an extension), subservient, complementary additions to the existing building.
- there can be scope to incorporate extensions of a

This office building in Basingstoke has been refurbished, incorporating an additional floor at the top of the building, which is consistent with the character of the building and enhances its appearance.
contrasting character, provided this is high quality, and is sensitively related to the existing building and the character of the area, in terms of issues such as scale, materials and location.

- the location of the extension should respond positively to the surrounding pattern of development, for example it should not come forwards of established building lines.
- ensure that the extension does not have a detrimental impact on neighbouring property(s)/uses, particularly in relation to sensitive land uses such as residential.

Refurbishment

11.56 Refurbishments of non-residential buildings are also supported in principle. This often involves making improvements to the appearance and sustainability credentials of the building. However, the approach taken in terms of issues such as type of materials and detailing still needs to be carefully related to the character of the existing building and the impact on the street scene.

This extension in Worting provides a subtle and subservient addition to the Saint Thomas of Canterbury Church.
Glossary

A

Active frontage – the front of a property which allows people inside and outside of that property to interact e.g. floor to ceiling windows at street level which allow people to see in and out; pavement dining restaurants.

Active solar gain – involves the use of solar collectors to generate electricity or to heat water.

Adaptability - the ability of a structure to be altered, often structurally, to fit changed circumstances and/or different uses.

Amenity – something that adds to a person’s comfort or convenience, e.g. privacy; lack of noise; attractive views.

Amenity space - an area of land, generally green space and planting, which allows for informal leisure and provides a setting for buildings. In the case of a dwelling, this is usually the garden area.

Architectural detailing – the designed detail on a building or structure, e.g. decorative lintels, cill and eaves details.

Architectural language – the way in which the elements of a building and different design features combine to influence the style and appearance of a building.

Axonometric drawing – a three-dimensional drawing, drawn from above at a diagonal angle.

B

Biodiversity – the variation of lifeforms, plant and animal, in a given area or ecosystem.

Boundary - the border or limit of a property or space. This may be indicated visually, through the use of a fence or wall; may be identified on a land ownership plan or similar, or may be historic and undefined.

Building line – a discernible line beyond which buildings are not erected. For example, rows of Victorian and Edwardian terraced and semi-detached properties have very clearly defined building lines.

Built form – how a building or group of buildings look, e.g. size, shape, height, location in plot, etc.

C

Character – the combination of factors that distinguish one place/structure from another, including issues such as the layout and appearance of buildings, topography, landform, hard and soft landscaping (including locally common species).

Conservation Area - “An area of special architectural or historic interest, the character or appearance of which it is desirable to preserve or enhance”. Set out in Section 69 of the Planning (Listed Buildings and Conservation Areas) Act 1990.

Context – the setting of a site or area, including features such as land uses, built and natural environment, social and physical characteristics.

Continuous frontage - the alignment of buildings which are joined or closely spaced, which have a direct and consistent relationship with, and all front onto, the public realm.

Curtailage – the area of land immediately surrounding a house or...
other building. In the case of a house, this is the area of land that is reasonably associated with the enjoyment of the property, usually the garden area.

In issue of what constitutes curtilage in relation to listed buildings can be more complicated, and have more significant implications, in that some buildings within the curtilage may be protected as part of the listing of the main building. This is a complicated issue which is covered in more detail in the following advice from Historic England:

https://content.historicengland.org.uk/content/docs/guidance/170127-he-curtilage-guidance-note-consultation-draft.pdf

D

Density – the relationship/ratio of a building or buildings to an area of land, usually calculated on the basis of the number of dwellings per hectare; gross density refers to the total number of buildings in a whole site, whereas net density makes deductions from the site area for features such as open space.

Desire lines – a route that people or animals instinctively wish to travel, often the shortest or straightest line between two points.

E

Enclosure - creation of a sense of defined space by means of surrounding buildings/structures/planting. The degree of enclosure will be defined by the relationship between the height of the vertical feature(s) relative to the width of the space.

Façade – the main face/front elevation of a building.

Fenestration – the design and placement of windows and other openings in a building.

Figure ground – the use of differentiation (usually black and white) to clearly show the position of buildings in relation to space on a plan/streetmap.

Form – the layout, density, scale appearance and landscape of a development. Can also mean three-dimensional shape.

Fronts – a structure that ‘looks out’ onto something; the main elevation of a building is located to look out over something that provides good amenity value, e.g. a park or lake, or something that benefits from active surveillance, e.g. a street or footpath.

Frontage - the area of land in front of a building or group of buildings up to the street; the front or face of a building.

G

Grain – the general arrangement or pattern of development of an area. Often used in relation to buildings and spaces between, and illustrated in figure ground drawings.

Green corridors - Rivers, roadside verges, canals, public rights of way and cycleways and railways

Green Infrastructure – connected and substantial networks of multifunctional green space.

H

Habitable rooms – a room for living purposes, excluding bathroom, toilets,
corridors, and halls. Kitchens can sometimes also be excluded.

Heritage Asset - Heritage assets include designated and non-designated heritage assets.

Designated heritage assets include Scheduled Monuments, Listed Buildings, Registered Parks and Gardens or Conservation Areas designated under the relevant legislation.

Nondesignated heritage assets are buildings, monuments, sites, places, areas or landscapes identified as having a degree of significance warranting consideration in planning decisions but which are not formally designated heritage assets, although they may be identified as Buildings of Local Interest. In some instances non-designated assets, particularly archaeological remains, may be of equivalent significance to designated assets, despite not yet having been formally designated.

J

Juxtaposition – two or more structures or landscape/townscape elements placed in close proximity with one another, which when combined create a contrasting, but attractive relationship.

K

Knapped flint – flints cut to produce a flat-faced stone. These are then bound together with mortar to form a wall.

L

Landscape – the visible features of an area of land (including physical elements such as landform, living features such as plants and animals, characteristics such as lighting and weather, and human impacts such as buildings). Soft landscape features include planting; hard landscaping include walls, patios, walkways, made up of hard materials.

Legibility - the ease with which visitors can orientate themselves and find their way around an area.

Listed building – A building, object or structure that has been judged to be of national importance in terms of architectural or historic interest and included on a special register, called the statutory List of Buildings of Special Architectural or Historic Interest.

When a building is listed, it is listed in its entirety, which means that both the exterior and the interior are protected. Listed buildings are classified into grades as follows:

- Grade I - buildings of exceptional interest (approximately 2% of all listed buildings)
- Grade II* - particularly important and more than special interest (approximately 4%)
- Grade II - buildings of special interest, warranting every effort being made to preserve them (94%)

More information on listed buildings can be found at the Council’s web site:

M

Mass/Massing – the physical volume or bulk of a structure or building.

Microclimate – the climate of a small, specific place in a particular area.

Mitigation – methods to reduce, remove or compensate for adverse impacts.
Mixed use – the integration of more than one type of use. For example, a building with a shop on the ground floor and residential units on the upper floors.

Orientation – the direction a building, structure or street is facing.

Overbearing – “a term used to describe the impact of a development or building on its surroundings, particularly a neighbouring property, in terms of its scale, massing and general dominating effect,” (Planning Portal)

Passive solar design – a building designed and orientated to make the most of the sun’s warmth. For example, by providing habitable rooms with large south facing windows.

Passive Solar Gain - systems that absorb, store and distribute the sun’s energy without relying on mechanical devices like pumps and fans, which require additional energy.

Passive surveillance – (also known as Natural Surveillance) informal, close observation of people in public areas, often from nearby buildings or spaces. For example, houses fronting directly onto public open space.

Pastiche – a design which seeks to replicate the style of an earlier era. The term pastiche architecture is sometimes used in a critical way when the attempt to replicate traditional architecture is not done very well.

Perimeter Block - a street block, each of whose frontages face out onto a public space (usually a street). In such cases the parking and amenity areas are normally located within the centre of the block or between buildings.

Permeability – the extent to which the layout of buildings and pedestrian and vehicular routes within a development affect the ability of people or vehicles to move in different directions and connect with existing movement networks.

Public open space – space set aside for formal or informal recreational purposes with access for the general public.

Public realm – all areas to which the public has open access, e.g. streets, squares, parks, public buildings.

R

Rhythm – the repetition of elements to create a pleasing effect.

Roofscape – the view of a combination of roofs in a particular street/area/town/city.

Scale – the size of a building in relation to its surroundings; the size of parts of a building or its details, in particular relation to the size of a person.

Sense of place – the multitude of landscape and townscape features (which can include activities and uses), which combine to make any one place memorable and special, in a manner which responds positively to local distinctiveness.

Setting – the context or environment in which something sits and which affects its appearance.

Settlement morphology – the way the settlement pattern evolves over time.
Settlement pattern – the distinctive way in which the roads, streets, spaces and buildings are laid out in a particular place.

Site constraint – a feature on a site or adjacent to a site which will have an impact on design decisions in a limiting manner. For example, a predominant building line along a street may constrain where a new building can be located.

Street scene – the combination of roadways, pavements, street furniture, trees, signage, building elevations and other elements that determine the overall appearance of a street.

Spatial structure – the way in which built form is arranged, including issues such as the shape, size and layout of blocks and streets.

Street pattern – the layout of streets in an area.

Sustainable development – the ability to maintain balance in a certain process or state in a system. The most commonly quoted definition for sustainable development is the Brundtland Commission definition of “development that meets the needs of the present without compromising the ability of future generations to meet their own needs”.

Sustainable drainage system – an environmentally-friendly way of dealing with surface water runoff to avoid problems associated with conventional drainage practice. These problems include exacerbating flooding. This approach may also be termed “SUDS” (or sustainable urban drainage systems), but applies equally to rural and urban sites.

Thermal mass – the capacity of a structure/material to store heat.

Topography – the surface features of a place. The most relevant factor is often the gradient and/or shape of landforms.

Townscape – the overall combination of streets, spaces, buildings and landscape features.

Undercroft car parking – parking at ground floor level within the footprint of the building.

Village design statement – an adopted Supplementary Planning Document that provides design guidance in relation to a particular village.

Vista – a framed view or outlook (such as between two buildings or a series of trees).
Appendix 1 - Village Design Statements

1.1 Village Design Statements (VDSs) are a practical tool that has been developed to help influence decisions on design and development, having been researched, written and consulted on by the local community. They help to identify local character and distinctiveness, encompassing the landscape setting of the village, the pattern and shape of the settlement, and the nature of buildings, spaces, landmarks and special features.

1.2 VDS documents are material considerations, having been adopted as council policy, while some are also specifically referenced in relevant neighbourhood plans. Consequently, these need to be taken into account in determining planning applications. To date, VDS documents have been prepared for a number of settlements in the borough and it is likely that further documents will be prepared in time and potentially updated in association with the neighbourhood planning process. Access to copies of the documents can be found on the borough council’s website.

1.3 VDS documents have been prepared for the following settlements:

- Ashford Hill with Headley (February 2004)
- Baughurst (April 2004)
- Burghclere (October 2002)
- Cliddesden (February 2004)
- Dummer (February 2004)
- East Woodhay (December 2005)
- Ellisfield (December 2002)
- Highclere and Penwood (July 2002)
- Kingsclere (July 2002)
- Oakley and Deane (April 2004)
- Old Basing and Lychpit (December 2005)
- Overton (February 2002)
- Sherborne St John (February 2004)
- Silchester (April 2007)
- St Mary Bourne (December 2005)
- Tadley (April 2004)
- Whitchurch (July 2004)
Appendix 2 – Basingstoke and Deane Borough Council Conservation Areas

More detailed heritage considerations will need to be applied to development which affects heritage assets, such as Conservation Areas and Listed Buildings. Additional guidance in relation to the borough’s Conservation Areas are set out on the council’s website:

https://www.basingstoke.gov.uk/conervationappraisals

The full list of Conservation Areas is as follows:

- Basingstoke Town
- Basingstoke – Brookvale West
- Basingstoke – Fairfields
- Basingstoke – South View
- Basingstoke Canal
- Ashmansworth
- Bradley
- Bramley and Bramley Green
- Brown and Chilton Candover
- Church Oakley
- Cliddesden
- Deane
- Dummer
- East End and North End
- Ecchinswell
- Ellisfield
- Hannington
- Hurstbourne Priors
- Kingsclere
- Laverstoke and Freefolk
- Mapledurwell
- Monk Sherbourne
- Newnham
- North Waltham
- Old Basing
- Overton
- Park Prewett
- Preston Candover
- Ramsdell
- Sherbourne St John
- Sherfield on Loddon
- Silchester
- St Mary Bourne and Stoke
- Steventon
- Tadley
- Tadley, Church Road
- Tufton
- Tunworth
- Up Nately
- Upton Grey
- Weston Crockett and Weston Patrick
- Whitchurch
- Worting
Appendix 3 – Storage and Collection of Waste and Recycling

1.1 Basingstoke and Deane Borough Council is responsible for the collection of waste and recyclable material from all domestic properties within its boundary (HMSO, 1990). This service is currently provided using wheeled bin containers for both waste and recyclable material and a plastic box for recycling glass, although some historic properties remain on sacks.

1.2 Collection occurs from the kerbside. Residents are required to place their wheeled bins and the plastic box for recycling glass at the edge of their property, which is the nearest point accessible to the collection vehicle. In the case of Houses of Multiple Occupancy (HMOs) and flats, collection will take place from a communal waste and recycling storage area.

1.3 It is essential that all new developments are designed so that waste and recycling issues are fully taken into account as part of the pre-planning and full planning application process and officers from the Joint Client Waste Team are fully consulted.

1.4 The provision of an effective and efficient waste and recycling service is a key council operation, and it is essential that the needs of this service are considered at the earliest design stage for new developments.

1.5 Development proposals must therefore:

- Comply with all applicable legislation.
- Provide sufficient internal waste and recycling storage capacity.
- Provide sufficient external storage space for the separate waste and recycling containers, as well as storage of bulky household items, where appropriate.
- Locate the waste and recycling storage areas:
 - where householders need not carry material (waste and recycling) a distance greater than 30m
 - where the collection vehicle can park as close as is practicable to the collection point to a maximum distance of 15m
 - at ground level
 - with dropped kerb crossings and road markings where appropriate
 - with appropriate signage.
- Include a site plan showing bin collection and storage points and a collection route.

1.6 The council’s waste and recycling collection service is reviewed on a regular basis and applicants are advised to contact BDBC to ascertain that the details outlined within this document are still applicable at the time.

1.7 The council is aware that the technology associated with waste storage and collection is evolving and is keen to
encourage innovative approaches, such as underground bin storage and other innovative waste storage and collection solutions, provided these do not undermine the viability of development and are practical from an operational perspective. Where such approaches are proposed these need to be informed by detailed information regarding the practicalities of such approaches, and will need to be agreed with the Waste and Recycling team.

2. Individual Houses

2.1 Internal Storage

To enable occupants to recycle their waste, developers should provide adequate internal storage, usually within the kitchen, for the separation of waste and recyclable material into three separate containers (one for waste, one for recycling and one specifically for glass), prior to the transfer of that material to the external wheeled bins and plastic box for recycling glass. It is the householder’s responsibility to provide the necessary containers for internal storage.

2.2 External Storage of Wheeled Bins

Basingstoke and Deane Borough Council currently provides each household two separate 2-wheeled bins of differing capacities for the containment of waste and recyclable material. A plastic box is provided for recycling glass bottles and jars. There is an option of a further wheeled bin container instead [fee payable] for recycling glass bottles and jars. The size and total number of bins and recycling boxes provided will depend on the size of the household (table 1).

2.3 Waste and Recycling Storage Areas

Containers should be located within the boundary of each house, in an open-air position, shaded, away from windows and within a suitably designed structure or area which should be able to accommodate the necessary number of bins and boxes.
for glass recycling for that household, ensuring that the lids can be fully opened (British Standards, 2005). This is particularly important for households where no rear access is proposed (picture 1). There must be clearance of 150mm around each bin or container and the storage area must be a minimum height of 1750mm (to allow for height when lid is open). The total floorspace for each bin or container is given in table 2. Glass boxes cannot be stacked on top of the wheeled bins or each other. Bin storage areas should be located to create minimum nuisance to adjoining properties.

Residents should not have to carry their waste and recyclable material a distance greater than 30m to their wheeled bins and containers for glass and should not have to wheel their bins or carry their containers for glass a distance greater than 15m to the edge of their property or collection point for collection from their container storage area (excluding vertical distances) (Approved Document H – Building Regulations 2010).

Container storage and collection areas with a collection route must be clearly identified on plans.

<table>
<thead>
<tr>
<th>Container</th>
<th>Dimensions</th>
<th>Floorspace Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>240L Wheeled Bin</td>
<td>Width 590mm Depth 740mm Height 1100mm Height (with open lid) 1750mm</td>
<td>890mm x 1040mm (includes 150mm around each container)</td>
</tr>
<tr>
<td>140L Wheeled Bin</td>
<td>Width 480mm Depth 550mm Height 1070mm</td>
<td>780mm x 850mm (includes 150mm around each container)</td>
</tr>
<tr>
<td>48L Plastic box for recycling glass</td>
<td>Width 390mm Depth 600mm Height 300mm</td>
<td>690mm x 900mm (includes 150mm around each container)</td>
</tr>
</tbody>
</table>
2.4 Collection of Wheeled Bins

Residents are required to place their wheeled bins and containers for glass at the edge of their property, at a point which is accessible to the collection crew member and the collection vehicle (HMSO, 1990). Collection crew members are not expected to move wheeled bins a distance greater than 15m and over surfaces which hinder their smooth passage, for example, steps (British Standards, 2005). The collection point must be accessible to the collection vehicle that is used by BDBC. More information can be found in Section 6.

Please note the council’s collection vehicle will only travel along roads that have been constructed to Hampshire County Council's adoptable standards.

Developers must provide written evidence that all roads have been constructed to a suitable standard if collection vehicle access is required.

<table>
<thead>
<tr>
<th>Container</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width</td>
</tr>
<tr>
<td>EcoMAX 220 litre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth</td>
</tr>
<tr>
<td></td>
<td>Height</td>
</tr>
<tr>
<td>EcoMax 330 litre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Width</td>
</tr>
<tr>
<td></td>
<td>Depth</td>
</tr>
<tr>
<td></td>
<td>Height</td>
</tr>
</tbody>
</table>

Table 3: Composting bin dimensions

2.5 Home Composting

In addition to encouraging recycling, the council requires that for developments with a rear garden, adequate space is provided for a home compost bin. The council currently subsidises home compost bins and these are available for residents to buy.

3. Houses of Multiple Occupancy and Flats

3.1 Internal Storage

To enable occupants to recycle their waste, developers should provide adequate internal storage, usually within the kitchen, for the separation of waste and recyclable material into three separate containers (one for
waste, one for recycling, and one specifically for glass), prior to the transfer of that material to the external wheeled bins and plastic boxes for glass recycling. For residents who share a communal waste and recycling storage area, the council provides a reusable plastic bag for the transfer of recycling.

The council does not consider the use of internal waste disposal chutes to be an acceptable alternative to the use of wheeled bins because they do not enable the satisfactory separation of recyclable material to be achieved.

3.2 External Storage of Wheeled Bins

For HMOs and flats, a trigger point of 6 dwellings is used to determine the most appropriate provision of containers for waste and recyclable material (Table 4).

This means that in a development containing up to and including 5 dwellings, each dwelling should be provided with space for one 140 litre and one 240 litre 2-wheeled bins plus a 48 litre plastic box for recycling glass. For developments comprising 6 or more dwellings, spaces for two 1100 litre 4-wheeled bins plus one 240 litre 2-wheeled bin for glass should be provided for each set of 6 dwellings. Therefore, for a development comprising 48 flats, spaces for sixteen 1100 litre 4-wheeled bins plus eight 240 litre 2-wheeled bins for glass recycling should be provided.

3.3 Waste and recycling storage areas

For HMOs and flats it will be necessary to provide a communal storage area(s). For large developments, several waste and recycling storage areas may be appropriate. Communal waste and recycling storage areas must be
designed as an integral part of the development and must be easily accessible for the dwellings that the serve. The siting and design of communal waste and recycling storage areas must also have regard to the impact of noise and smell on the occupiers of neighbouring properties, existing and proposed. Appropriate signage should also be displayed to clearly identify the bin storage area.

The storage area should be located at vehicle access level at a point which is away from the main entrance to the building. The distance from the building to the waste and recycling storage area should be no greater than 30m (Approved Document H – Building Regulations 2010).

The storage area must be of an adequate size to accommodate the necessary number of bins and containers for glass for the dwellings that the area serves (table 4). If the waste and recycling storage area is to serve 12 flats, space for Four 1100 litre 4-wheeled bins plus space for Two x 240 litre 2-wheeled bins for glass should be provided. There must be at least 150mm
clearance around each bin, with a minimum 1.3m clearance required if 1100 litre bins are to be positioned facing each other (see table 5). This will allow access to each individual container and ensure that an individual bin can be removed from the area without the need to move other containers (picture 3).

Communal waste and recycling storage areas should be a minimum height of 2m.

Appropriate roofing and lighting should also be provided for communal storage areas, as well as provision for washing down and draining the floor into a system suitable for receiving a polluted effluent (Approved Document H – Building Regulations 2010). If 1100l 4-wheeled bins are going to be provided, door and alley widths should be at least 2m to allow safe manoeuvring.

Bin storage areas can become the focus of anti-social behaviour and are sometimes vandalised. Therefore, it is important to ensure that the siting and design of these elements provides for structures which are safe and secure.
Suitable locks also need to be provided on the storage structures/areas.

Communal bin storage and collection areas plus collection route(s) must be clearly identified on plans.

3.4 Collection of Wheeled Bins

The location of the waste and recycling storage area for HMOs and flats should permit safe manoeuvring and transfer of the containers to the collection vehicle and highway access that will enable the collection vehicle to park no more than 15m from the collection point if 2-wheeled bins are used and 10m if 4-wheeled bins are used. (British Standard, 2005). The collection crew shall not be expected to move containers over surfaces that will hinder their smooth passage and where slopes occur, these cannot exceed 1:12 (Approved Document H – Building Regulations 2010). Paths between the waste and recycling storage area and the collection vehicle should be free from kerbs and steps, with a minimum width of 2m. More information can be found in Section 6.

Please note the council’s collection vehicle will only travel along roads that have been constructed to Hampshire County Council’s adoptable standards.

Developers must provide written evidence that all roads have been constructed to a suitable standard if collection vehicle access is required.

Bin store with poor access for collectors
3.5 Storage of Bulky Household Waste

Basingstoke and Deane provides a collection of bulky household items, such as fridges, furniture, etc. These items must not be placed in the waste and recycling storage area unless a collection has been arranged with the council.

3.6 Composting of Grounds Maintenance Waste

Where practicable, arrangements should be made in the development of flats to facilitate the on-site composting of material from the maintenance of communal grassed areas and shrub planting.

The appropriate siting of a composting area for grass cuttings and chipped woody material to provide compost for re-use on site would save transport and disposal costs for grounds maintenance contractors.

4. Major Retail, Leisure and Community Facilities

Major retail, leisure and community facilities will be required to accommodate public 'bring sites' for the collection of glass, paper and textiles. Bring sites should be located in a position that provides easy and safe access and ease of use for both waste producers and collectors, with special consideration to be given for older persons and people with disabilities.

Adequate signage is required to ensure that users understand what items can be recycled at the bring site. The council’s Joint Client Waste Team will provide specifications for the sign. Sound-proof fencing will be required if the nearest residential property is within 100m.

For larger sites, such as supermarkets/shopping centre car parks, sufficient space should be provided for at least four glass banks. In this instance, developers should contact the council at the earliest opportunity. The council will provide the banks and arrange for them to be emptied by a standard Refuse Collection Vehicle, details of which can be found in Section 6.

Textile banks are 1.6m² base and adequate space should be provided for them on new developments. The council will arrange for them to be delivered. The textile banks are emptied by a large van.

The bring site should be clearly identified on the plans and the council's Joint Waste Client Team consulted on the number of containers at the pre-application stage.

5. Commercial Developments

The volume of waste generated and thus the number and type of containers that a commercial development requires is dependent on the activity of the occupant. Applicants should consult with the Joint Client Waste Team at an early stage to reach agreement on the number of containers required.

Adequate space should be provided to maximise the amount of recyclable material that is segregated and sent
for recycling as well as to maximise the number of containers in order to reduce the number of collections and therefore collection vehicle traffic.

6. Roadways and Vehicles – Technical Data

Roads providing access to buildings should have foundations and a hardwearing surface (including manholes covers) capable of withstanding the maximum gross vehicle weight of 26 tonnes.

The largest waste collection vehicles currently in use are 10.85m long and 2.4m wide, with a turning circle of 19m. Swept-path analysis can be used to assess new design layouts for accessibility. Vehicle details can be obtained on request in order to undertake swept-path assessment.

Roads should have a minimum width of 5m and be arranged so that collection vehicles can continue mainly in a forward direction. If reversing is unavoidable, then the distance should not exceed 12m and consideration must be given to the provision of a turning facility that can accommodate the collection vehicle (British Standard, 2005). For health and safety reasons, waste collection vehicles should never be required to reverse up or down a slope or ramp.

7. References

8. Further Information and Contact Details

An example of a collection vehicle for the purpose of designing layouts is set out below.

For further information on the councils waste and recycling service and the vehicles used by the Council please contact: Joint Client Waste Team, Basingstoke and Deane Borough Council, 01256 844844

Further information on public highways and maintenance is available from Hampshire County Council, Local Area Office, Hook 0845 603 5633

Further information on highway design and adoption guidance, please contact: Planning and Transport, Basingstoke and Deane Borough Council, 01256 844844

For further information on commercial recycling collections, please visit www.wastedirectory.org.uk
AutoTrack Vehicle Details

Vehicle Name: Norba GPM3 Econic V8.02

Type: Refuse vehicle

Category: (Unspecified)

Classification: BBDC

Source: Mercedes-Benz Econic 2628LL Double Drive Datasheet

Description: BBDC Vocla RCV

Notes: Long wheelbase

Unit 1 Name: Norba GPM3 Econic Tractor V8.02

AutoTrack Vehicle Details

Unit Name: Norba GPM3 Econic Tractor V8.02

Type: Refuse / Garbage Truck (Large)

Body style: (Unspecified)

Classification: BBDC

Source: Mercedes-Benz Datasheet / Measured at depot

Description: Econic chassis - 6x4 2628LL Double Drive

Notes: Norba GPM3 compactor.

Axle(s):

- **Front Primary Axle**
 - **Primary Front Axle Offset:** 0.000m
 - **Effective Front Axle Offset:** 0.000m (Auto Calculated)
 - **Maximum Wheel Angle:** Unlimited
 - **Status:** Active Non Self-Steered
 - **Track Width:** 2.250m
 - **Total Wheels:** 2 (positioned at the ends of the axle)
 - **Tyre Width:** 0.315m
 - **Tyre Diameter:** 1.000m

- **Rear Axle(s):**
 - **Primary Rear Axle Offset:** 4.220m (Innermost Axle behind Front Primary Axle)
 - **Effective Rear Axle Offset:** 4.600m (Auto Calculated)
 - **Maximum Wheel Angle:** Unlimited
 - **Rear Axle Spacing:** 1.560m
 - **Status:** Active Non Self-Steered
 - **Track Width:** 2.420m
 - **Total Wheels:** 4 (positioned at the ends of the axle)
 - **Tyre Width:** 0.515m
 - **Tyre Diameter:** 1.070m

Steering:

- **Min. Wall / Wall Turning Radius:** 9.500m (based upon body only)
- **Calculated Maximum Wheel Angle:** 48.000deg
- **Lock to Lock Time (Fwd/Rev.):** 4.000sec / 4.000sec
- **Driver / Pilot:**
 - **Driver Offset Longitudinally:** 0.300m (in front of Front Primary Axle)
 - **Driver / Pilot Offset Laterally:** 0.600m (Right of Centreline)
 - **Driver Height:** 1.790m (Above ground level)
- **Front coupling:** None
- **Rear coupling:** None

Body outline (plan):

- **Outline Type:** Rectangle
- **Offset (X,Y):** -1.800m, 0.000m
- **Length / Width:** 10.850m / 2.500m
Technical requirements

10. The standard requires that:

a. the dwelling provides at least the gross internal floor area and built-in storage area set out in Table 1 below.
b. a dwelling with two or more bedspaces has at least one double (or twin) bedroom.
c. in order to provide one bedspace, a single bedroom has a floor area of at least 7.5m² and is at least 2.15m wide.
d. in order to provide two bedspaces, a double (or twin bedroom) has a floor area of at least 11.5m².
e. one double (or twin bedroom) is at least 2.75m wide and every other double (or twin) bedroom is at least 2.55m wide.
f. any area with a headroom of less than 1.5m is not counted within the Gross Internal Area unless used solely for storage (if the area under the stairs is to be used for storage, assume a general floor area of 1m² within the Gross Internal Area).
g. any other area that is used solely for storage and has a headroom of 900-1500mm (such as under eaves) is counted at 50% of its floor area, and any area lower than 900mm is not counted at all.
h. a built-in wardrobe counts towards the Gross Internal Area and bedroom floor area requirements, but should not reduce the effective width of the room below the minimum widths set out above. The built-in area in excess of 0.72m² in a double bedroom and 0.36m² in a single bedroom counts towards the built-in storage requirement.
i. the minimum floor to ceiling height is 2.3m for at least 75% of the Gross Internal Area.

1 The internal face of a perimeter wall is the finished surface of the wall. For a detached house, the perimeter walls are the external walls that enclose the dwelling, and for other houses or apartments they are the external walls and party walls.
Table 1 - Minimum gross internal floor areas and storage (m²)

<table>
<thead>
<tr>
<th>Number of bedrooms(b)</th>
<th>Number of bed spaces (persons)</th>
<th>1 storey dwellings</th>
<th>2 storey dwellings</th>
<th>3 storey dwellings</th>
<th>Built-in storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1p</td>
<td>39 (37) *</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>50</td>
<td>58</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>2b</td>
<td>3p</td>
<td>61</td>
<td>70</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>4p</td>
<td>70</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>4p</td>
<td>74</td>
<td>84</td>
<td>90</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>5p</td>
<td>86</td>
<td>93</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6p</td>
<td>95</td>
<td>102</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>5p</td>
<td>90</td>
<td>97</td>
<td>103</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>6p</td>
<td>99</td>
<td>106</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7p</td>
<td>108</td>
<td>115</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8p</td>
<td>117</td>
<td>124</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>6p</td>
<td>103</td>
<td>110</td>
<td>116</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>7p</td>
<td>112</td>
<td>119</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8p</td>
<td>121</td>
<td>128</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>7p</td>
<td>116</td>
<td>123</td>
<td>129</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>8p</td>
<td>125</td>
<td>132</td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

* Notes (added 19 May 2016):

1. Built-in storage areas are included within the overall GIA and include an allowance of 0.5m² for fixed services or equipment such as a hot water cylinder, boiler or heat exchanger.

2. GIA for one storey dwellings include enough space for one bathroom and one additional WC (or shower room) in dwellings with 5 or more bedspaces. GIA for two and three storey dwellings include enough space for one bathroom and one additional WC (or shower room). Additional sanitary facilities may be included without increasing the GIA provided that all aspects of the space standard have been met.

3. Where a 1b/1p has a shower room instead of a bathroom, the floor area may be reduced from 39m² to 37m², as shown bracketed.

4. Furnished layouts are not required to demonstrate compliance.
If you need this information in a different format, for example large print, CD or braille, please contact the council.

©Basingstoke and Deane Borough Council July 2018